Abstract

Fast detection and identification of chemicals are of utmost importance for field testing and real-time monitoring in many fields. Raman spectroscopy is the predominant technique in principle, but its wide application is limited on account of weak scattering efficiency. Surface Enhanced Raman Spectroscopy (SERS) technique provides a solution for signal enhancement, but may not good at fast detection due to cross contamination and bulky instruments. Hollow-core fiber-based Raman cell with long interaction length can achieve high detection sensitivity, but it also suffers from low flow rate, bulky high-pressure equipment and light coupling structure, which also restricts its application for fast detection. In order to solve those problems, we proposed a portable Raman cell, by using metal-lined hollow-core fibers (MLHCF) with large bandwidth, good field confinement, extremely large numerical aperture and arbitrary length. With our proposed fiber inserted light coupling and light reflecting method, a Raman cell of 3.1 cm in length provides nearly 50 times of signal enhancement compared with direct detection using bare fiber tip. Furthermore, the sample exchange rate could be as fast as 1 second even under normal pressure without any cross contamination. At last, we also demonstrated the underlying general mechanism of signal enhancement and summarized it as volumetric enhancement of Raman scattering (VERS). Both the experiment results and the theoretical analysis demonstrated that our device has the potential for fast online Raman detection, which also possesses high-sensitivity and high-accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface enhanced Raman scattering in a hollow core microstructured optical fiber

Felicity M. Cox, Alexander Argyros, Maryanne C. J. Large, and Srinath Kalluri
Opt. Express 15(21) 13675-13681 (2007)

High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering

Xuan Yang, Chao Shi, Damon Wheeler, Rebecca Newhouse, Bin Chen, Jin Z. Zhang, and Claire Gu
J. Opt. Soc. Am. A 27(5) 977-984 (2010)

Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements

Bing-Hong Liu and Yi-Wei Shi
Appl. Opt. 52(21) 5165-5170 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
    [Crossref] [PubMed]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
    [Crossref] [PubMed]
  3. S. D. Schwab and R. L. Mccreery, “Remote, Long-Pathlength Cell for High-Sensitivity Raman Spectroscopy,” Appl. Spectrosc. 41(1), 126–130 (1987).
    [Crossref]
  4. D. L. Jeanmaire and R. P. V. Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [Crossref]
  5. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
    [Crossref]
  6. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
    [Crossref] [PubMed]
  7. A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
    [Crossref]
  8. M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73(6), 1393–1397 (2001).
    [Crossref] [PubMed]
  9. A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express 19(16), 15244–15254 (2011).
    [Crossref] [PubMed]
  10. A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21(10), 12340–12350 (2013).
    [Crossref] [PubMed]
  11. S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
    [Crossref] [PubMed]
  12. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
    [Crossref] [PubMed]
  13. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31(12), 1911–1913 (2006).
    [Crossref] [PubMed]
  14. T. M. James, S. Rupp, and H. H. Telle, “Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres,” Anal. Methods 7(6), 2568–2576 (2015).
    [Crossref]
  15. W. F. Pearman, J. C. Carter, S. M. Angel, and J. W. Chan, “Multipass capillary cell for enhanced Raman measurements of gases,” Appl. Spectrosc. 62(3), 285–289 (2008).
    [Crossref] [PubMed]
  16. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27(12), 2612–2619 (2010).
    [Crossref]
  17. W. F. Pearman, J. C. Carter, S. M. Angel, and J. W. Chan, “Quantitative measurements of CO2 and CH4 using a multipass Raman capillary cell,” Appl. Opt. 47(25), 4627–4632 (2008).
    [Crossref] [PubMed]
  18. S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
    [Crossref] [PubMed]
  19. D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
    [Crossref]
  20. Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
    [Crossref]
  21. R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst (Lond.) 137(20), 4669–4676 (2012).
    [Crossref] [PubMed]
  22. R. N. Jones, “The antimicrobial activity of cefotaxime: comparative multinational hospital isolate surveys covering 15 years,” Infection 22(3), S152–S160 (1994).
  23. C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
    [PubMed]
  24. D. G. Harle and B. A. Baldo, “Drugs as allergens: an immunoassay for detecting IgE antibodies to cephalosporins,” Int. Arch. Allergy Appl. Immunol. 92(4), 439–444 (1990).
    [Crossref] [PubMed]
  25. S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
    [Crossref] [PubMed]
  26. Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
    [Crossref] [PubMed]
  27. Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
    [Crossref]
  28. B. B. Koleva, T. M. Kolev, and M. Spiteller, “Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy,” J. Pharm. Biomed. Anal. 48(1), 201–204 (2008).
    [Crossref] [PubMed]

2018 (2)

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
[Crossref]

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

2017 (1)

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

2015 (3)

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

T. M. James, S. Rupp, and H. H. Telle, “Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres,” Anal. Methods 7(6), 2568–2576 (2015).
[Crossref]

2014 (1)

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst (Lond.) 137(20), 4669–4676 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Multimode metal-lined capillaries for Raman collection and sensing,” J. Opt. Soc. Am. B 27(12), 2612–2619 (2010).
[Crossref]

2008 (4)

W. F. Pearman, J. C. Carter, S. M. Angel, and J. W. Chan, “Multipass capillary cell for enhanced Raman measurements of gases,” Appl. Spectrosc. 62(3), 285–289 (2008).
[Crossref] [PubMed]

W. F. Pearman, J. C. Carter, S. M. Angel, and J. W. Chan, “Quantitative measurements of CO2 and CH4 using a multipass Raman capillary cell,” Appl. Opt. 47(25), 4627–4632 (2008).
[Crossref] [PubMed]

B. B. Koleva, T. M. Kolev, and M. Spiteller, “Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy,” J. Pharm. Biomed. Anal. 48(1), 201–204 (2008).
[Crossref] [PubMed]

A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
[Crossref] [PubMed]

2001 (1)

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73(6), 1393–1397 (2001).
[Crossref] [PubMed]

2000 (1)

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
[Crossref]

1999 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

1994 (1)

R. N. Jones, “The antimicrobial activity of cefotaxime: comparative multinational hospital isolate surveys covering 15 years,” Infection 22(3), S152–S160 (1994).

1990 (1)

D. G. Harle and B. A. Baldo, “Drugs as allergens: an immunoassay for detecting IgE antibodies to cephalosporins,” Int. Arch. Allergy Appl. Immunol. 92(4), 439–444 (1990).
[Crossref] [PubMed]

1987 (1)

1978 (1)

C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
[PubMed]

1977 (1)

D. L. Jeanmaire and R. P. V. Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Addison, C. J.

Altkorn, R.

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73(6), 1393–1397 (2001).
[Crossref] [PubMed]

Angel, S. M.

Anis, H.

Baldo, B. A.

D. G. Harle and B. A. Baldo, “Drugs as allergens: an immunoassay for detecting IgE antibodies to cephalosporins,” Int. Arch. Allergy Appl. Immunol. 92(4), 439–444 (1990).
[Crossref] [PubMed]

Blades, M. W.

Bögözi, T.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Buric, M. P.

Cai, H.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

Carter, J. C.

Chan, J. W.

Chen, K. P.

Chen, S.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Chu, J.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst (Lond.) 137(20), 4669–4676 (2012).
[Crossref] [PubMed]

Chu, Q.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

Clarke, S. J.

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
[Crossref]

Ding, L. X.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Duyne, R. P. V.

D. L. Jeanmaire and R. P. V. Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Falk, J.

Fan, D.

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Frosch, T.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
[Crossref]

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[Crossref] [PubMed]

Godin, M.

Goodacre, R.

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
[Crossref] [PubMed]

Hanf, S.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

Harb, A.

Harle, D. G.

D. G. Harle and B. A. Baldo, “Drugs as allergens: an immunoassay for detecting IgE antibodies to cephalosporins,” Int. Arch. Allergy Appl. Immunol. 92(4), 439–444 (1990).
[Crossref] [PubMed]

Hippler, M.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst (Lond.) 137(20), 4669–4676 (2012).
[Crossref] [PubMed]

Hu, D. J. J.

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

James, T. M.

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

T. M. James, S. Rupp, and H. H. Telle, “Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres,” Anal. Methods 7(6), 2568–2576 (2015).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. V. Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Ji, W.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

Jin, Z.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Jones, R. N.

R. N. Jones, “The antimicrobial activity of cefotaxime: comparative multinational hospital isolate surveys covering 15 years,” Infection 22(3), S152–S160 (1994).

Keiner, R.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

Khetani, A.

Knebl, A.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Kolev, T. M.

B. B. Koleva, T. M. Kolev, and M. Spiteller, “Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy,” J. Pharm. Biomed. Anal. 48(1), 201–204 (2008).
[Crossref] [PubMed]

Koleva, B. B.

B. B. Koleva, T. M. Kolev, and M. Spiteller, “Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy,” J. Pharm. Biomed. Anal. 48(1), 201–204 (2008).
[Crossref] [PubMed]

Konorov, S. O.

Kudelski, A.

A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
[Crossref] [PubMed]

Liang, Y. Z.

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Lin, B.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

Littleford, R. E.

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
[Crossref] [PubMed]

Liu, Z. X.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Lu, Y.

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Mccreery, R. L.

Mitchell, B.

C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
[PubMed]

Momenpour, A.

Off, A.

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

Pearman, W. F.

Pelletier, M. J.

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73(6), 1393–1397 (2001).
[Crossref] [PubMed]

Ping, S.

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Popp, J.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
[Crossref]

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[Crossref] [PubMed]

Riordon, J.

Robinson, C. A.

C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
[PubMed]

Rupp, S.

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

T. M. James, S. Rupp, and H. H. Telle, “Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres,” Anal. Methods 7(6), 2568–2576 (2015).
[Crossref]

Salter, R.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst (Lond.) 137(20), 4669–4676 (2012).
[Crossref] [PubMed]

Schulze, H. G.

Schwab, S. D.

Seitz-Moskaliuk, H.

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

Siegel, A. L.

C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
[PubMed]

Smith, W. E.

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
[Crossref] [PubMed]

Spiteller, M.

B. B. Koleva, T. M. Kolev, and M. Spiteller, “Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy,” J. Pharm. Biomed. Anal. 48(1), 201–204 (2008).
[Crossref] [PubMed]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
[Crossref]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
[Crossref]

Telle, H. H.

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

T. M. James, S. Rupp, and H. H. Telle, “Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres,” Anal. Methods 7(6), 2568–2576 (2015).
[Crossref]

Tiwari, V.

Tiwari, V. S.

Turner, R. F.

Vasiliades, J.

C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
[PubMed]

Wang, G.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Wei, L.

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Woodruff, S. D.

Xu, F.

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Xu, W.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

Yan, D.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
[Crossref]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[Crossref] [PubMed]

Ye, F.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
[Crossref]

Zhang, Q. M.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhang, X.

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

Zhang, Z. M.

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhou, H.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Anal. Chem. (4)

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[Crossref] [PubMed]

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73(6), 1393–1397 (2001).
[Crossref] [PubMed]

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[Crossref] [PubMed]

Anal. Methods (1)

T. M. James, S. Rupp, and H. H. Telle, “Trace gas and dynamic process monitoring by Raman spectroscopy in metal-coated hollow glass fibres,” Anal. Methods 7(6), 2568–2576 (2015).
[Crossref]

Analyst (Lond.) (3)

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst (Lond.) 137(20), 4669–4676 (2012).
[Crossref] [PubMed]

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, “Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy,” Analyst (Lond.) 130(7), 1019–1026 (2005).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1­3), 131–136 (2000).
[Crossref]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Clin. Chem. (1)

C. A. Robinson, B. Mitchell, J. Vasiliades, and A. L. Siegel, “Cephalosporin antibiotic interference with analysis for theophylline by high-performance liquid chromatography,” Clin. Chem. 24(10), 1847 (1978).
[PubMed]

IEEE Photonics J. (1)

D. Fan, Z. Jin, G. Wang, F. Xu, Y. Lu, D. J. J. Hu, L. Wei, S. Ping, and X. Zhang, “Extremely high-efficiency coupling method for hollow-core photonic crystal fiber,” IEEE Photonics J. 9(3), 7104108 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, and X. Zhang, “All-fiber Raman Biosensor by Combining Reflection and Transmission Mode,” IEEE Photonics Technol. Lett. 30(4), 387–390 (2018).
[Crossref]

Infection (1)

R. N. Jones, “The antimicrobial activity of cefotaxime: comparative multinational hospital isolate surveys covering 15 years,” Infection 22(3), S152–S160 (1994).

Int. Arch. Allergy Appl. Immunol. (1)

D. G. Harle and B. A. Baldo, “Drugs as allergens: an immunoassay for detecting IgE antibodies to cephalosporins,” Int. Arch. Allergy Appl. Immunol. 92(4), 439–444 (1990).
[Crossref] [PubMed]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. V. Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Pharm. Biomed. Anal. (1)

B. B. Koleva, T. M. Kolev, and M. Spiteller, “Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy,” J. Pharm. Biomed. Anal. 48(1), 201–204 (2008).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sensors (Basel) (1)

S. Rupp, A. Off, H. Seitz-Moskaliuk, T. M. James, and H. H. Telle, “Improving the detection limit in a capillary raman system forin situgas analysis by means of fluorescence reduction,” Sensors (Basel) 15(9), 23110–23125 (2015).
[Crossref] [PubMed]

Talanta (1)

A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
[Crossref] [PubMed]

Trac-. Trends Analyt. Chem. (1)

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber Enhanced Raman Gas Spectroscopy,” Trac-. Trends Analyt. Chem. 103, 230–238 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the system structure. The inset is the structure diagram of SLHCF; (b) The optical fiber is inserted into SLHCF and can guide both pump laser and Raman light. The sample is injected into SLHCF through the gap between the optical fiber and SLHCF; (c) The glass fiber coated with gold film is inserted into SLHCF, which can reflect both pump laser and Raman light. The sample leaks out of SLHCF through the gap between two fibers. Two inserting structures are sealed in three-way valves to ensure reliable sample exchange and fully light-sample interaction. (d) Experimental system of our configuration; (e) Details of coupling the Raman probe with the large-core optical fiber; (f) Gold film coated on the end face of the glass fiber.
Fig. 2
Fig. 2 (a) Raman spectra of pure ethanol in the beaker (blue line), SLHCF with (black line) and without gold film (red line). The inset is Raman peaks at 881 cm−1 obtained by Gaussian fitting; (b) Raman peaks at 881 cm−1 of pure ethanol in our configuration with different SLHCF lengths; (c) The relationship of normalized Raman intensity and SLHCF length.
Fig. 3
Fig. 3 The enhancement of Raman signal by further focusing for a tiny sample with volume of V.
Fig. 4
Fig. 4 Comparison of pump laser transmission in four structures. (a) Pump laser is focused by the objective and only the sample near the focus can be excited by pump laser to emit the Raman signal; (b) Pump laser is coupled into HCPCF. The laser at the focus is extended in HCPCF with low loss and the sample volume increases as the length of HCPCF increases; (c) Pump laser is coupled into MLHCF and transmits to a long distance; (d) Pump laser is coupled into MLHCF and reflected by the gold film at the other end of the fiber to double the volume of laser-sample interaction.
Fig. 5
Fig. 5 (a) Schematic of reflection Raman light in free space; (b) Schematic of reflection Raman light in SLHCF; (c) Schematic of the Raman cell in SLHCF. d1 is the core diameter of the optical fiber (d1 = 275 μm). d2 is the outer diameter of the optical fiber or glass fiber (d2 = 300 μm). D is the inner diameter of SLHCF (D = 320 μm).
Fig. 6
Fig. 6 (a) The enhancement factor γ1 of the Raman light in SLHCF which can be collected by Raman probe versus that in free space at different fiber lengths; (b) The relationship between normalized reflection and transmission Raman intensity and SLHCF length. P2, P3 is the reflection Raman light in the length of 0-L and L-2L and P4, P5 is the transmission Raman light in the length of 0-L and L-2L separately. Ptotal is the sum of P2, P3, P4 and P5; (c) The enhancement factor γ2 of the Raman light in SLHCF with gold film versus that without gold film at different fiber lengths; (d) The enhancement factor γ (γ = γ1 × γ2) of the Raman light in SLHCF with gold film versus that in free space at different fiber lengths. In our experiment, the length of SLHCF is 3.1 cm, which can reach 60.4 times of enhancement factor in theory.
Fig. 7
Fig. 7 Raman spectrum of (a) pure ethanol, (b) pure methanol and (c) the mixture of ethanol and methanol at the volume ratio of 1:1.
Fig. 8
Fig. 8 (a)-(f) Raman spectra of CTX with different concentrations ranging from 0.25 to 8 mg/mL; (g) The linear relationship between the Raman signal intensity and the concentration of CTX.

Tables (1)

Tables Icon

Table 1 Comparison of all the excited Raman light and the volumetric collection efficiency of Raman light in four structures for the case of unconstrained quantity of analyte

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P i = 1 M σ i I i = M σ I 0 = m σ V I 0
P m σ V I 0 = m σ S L P p S = m σ L P p
P 1 = m σ d 1 2 tan α α α α α η 1 I 1 l 2 exp ( κ 1 l ) e x p ( κ 2 l ) d θ d ψ d l
P 0 = 0 L m σ π ( D 2 ) 2 η 0 I 0 exp ( κ 1 l ) e x p ( κ 2 l ) d l
P 2 = m σ π ( D 2 ) 2 η 0 I 0 0 L exp ( κ 1 l ) e x p ( κ 2 l ) d l
P 3 = m σ π ( D 2 ) 2 η 0 R ( d 2 D ) 2 I 0 0 L exp [ κ 1 ( 2 L l ) ] e x p ( κ 2 l ) d l
P 4 = m σ π ( D 2 ) 2 η 0 R ( d 2 D ) 2 I 0 0 L exp ( κ 1 l ) e x p [ κ 2 ( 2 L l ) ] d l
P 5 = m σ π ( D 2 ) 2 η 0 R 2 ( d 2 D ) 4 I 0 0 L exp [ κ 1 ( 2 L l ) ] e x p [ κ 2 ( 2 L l ) ] d l
P total = P 2 + P 3 + P 4 + P 5

Metrics