Abstract

We observe the transient evolution of the laser pumped magnetic resonance in a paraffin-coated rubidium vapor cell and analyze the phenomena numerically by using the four-level density matrix. With the increased radio frequency (RF) sweep rate, the traditional Lorentz signal turns to an asymmetric shape at low sweep rate and starts to oscillate at a high sweep rate. The transient oscillation’s features, including frequency and the decay time, are studied by suddenly turning on the RF field to the resonance Larmor precession frequency under the different RF field and light field parameters. The experimental result reveals the transient signals’ strong dependence on the RF field power and light power. Especially, the transient oscillation frequency primarily depends on the RF field’s power and whatever power the laser light is. When the laser power is lower, the transient oscillation frequency is proportional to the RF field’s amplitude. These transient evolution signals are also confirmed with the numerical calculations based on the density-matrix equation of motion.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cesium optical-radio-frequency resonance line reversals and doubling

Feiyun Fang, Xiaochao Cao, Yao Hu, Yunfei Xu, and Zhaoying Wang
J. Opt. Soc. Am. B 36(2) 517-523 (2019)

Magnetic resonance line shapes in optical pumping and light-shift experiments in alkali atomic vapors

J. Skalla, S. Lang, and G. Wäckerle
J. Opt. Soc. Am. B 12(5) 772-781 (1995)

Phase and amplitude variations of optically induced spin transients

Martin Rosatzin, Dieter Suter, Wulfhard Lange, and Jürgen Mlynek
J. Opt. Soc. Am. B 7(7) 1231-1238 (1990)

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker and C. L. Tang, “Observation of the optical transient nutation effect,” Phys. Rev. Lett. 21(9), 591–594 (1968).
    [Crossref]
  2. R. G. Brewer and R. L. Shoemaker, “Photo echo and optical nutation in molecules,” Phys. Rev. Lett. 27(10), 631–634 (1971).
    [Crossref]
  3. R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6(6), 2001–2007 (1972).
    [Crossref]
  4. S. E. Harris and J. J. Macklin, “Lasers without inversion: Single-atom transient response,” Phys. Rev. A Gen. Phys. 40(7), 4135–4137 (1989).
    [Crossref] [PubMed]
  5. R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: transient and steady-state cases,” Phys. Rev. A 11(5), 1641–1649 (1975).
    [Crossref]
  6. Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20(13), 1489–1491 (1995).
    [Crossref] [PubMed]
  7. I. V. Jyotsna and G. S. Agarwal, “Coherent population trapping at low light levels,” Phys. Rev. A 52(4), 3147–3152 (1995).
    [Crossref] [PubMed]
  8. S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
    [Crossref]
  9. L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
    [Crossref]
  10. E. Breschi, Z. Grujić, and A. Weis, “In situ calibration of magnetic field coils using free-induction decay of atomic alignment,” Appl. Phys. B 115(1), 85–91 (2014).
    [Crossref]
  11. L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
    [Crossref]
  12. N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
    [Crossref]
  13. P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65(2), 023814 (2002).
    [Crossref]
  14. S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
    [Crossref]
  15. F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
    [Crossref]
  16. L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherence-population-trapping transients induced by an ac magnetic field,” Phys. Rev. A 85(6), 063809 (2012).
    [Crossref]
  17. L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherent-population-trapping transients induced by a modulated transverse magnetic field,” Phys. Rev. A 88(2), 023827 (2013).
    [Crossref]
  18. K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
    [Crossref]
  19. U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
    [Crossref]
  20. J. F. Chen, W. Lu, S. Wang, M. M. T. Loy, G. K. L. Wong, and S. Du, “Two-photon free-induction decay with electromagnetically induced transparency,” Opt. Lett. 35(11), 1923–1925 (2010).
    [Crossref] [PubMed]
  21. M. U. Momeen, G. Rangarajan, and V. Natarajan, “Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell,” Phys. Rev. A 81(1), 013413 (2010).
    [Crossref]
  22. R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
    [Crossref]
  23. D. Budker, and D. F. J. Kimball, Optical magnetometry (Cambridge University, Published, 2013).

2018 (1)

R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
[Crossref]

2017 (1)

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

2014 (2)

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

E. Breschi, Z. Grujić, and A. Weis, “In situ calibration of magnetic field coils using free-induction decay of atomic alignment,” Appl. Phys. B 115(1), 85–91 (2014).
[Crossref]

2013 (2)

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherent-population-trapping transients induced by a modulated transverse magnetic field,” Phys. Rev. A 88(2), 023827 (2013).
[Crossref]

2012 (2)

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherence-population-trapping transients induced by an ac magnetic field,” Phys. Rev. A 85(6), 063809 (2012).
[Crossref]

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

2010 (2)

M. U. Momeen, G. Rangarajan, and V. Natarajan, “Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell,” Phys. Rev. A 81(1), 013413 (2010).
[Crossref]

J. F. Chen, W. Lu, S. Wang, M. M. T. Loy, G. K. L. Wong, and S. Du, “Two-photon free-induction decay with electromagnetically induced transparency,” Opt. Lett. 35(11), 1923–1925 (2010).
[Crossref] [PubMed]

2005 (1)

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

2004 (1)

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
[Crossref]

2002 (1)

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65(2), 023814 (2002).
[Crossref]

2001 (1)

F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
[Crossref]

1997 (1)

K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
[Crossref]

1995 (2)

I. V. Jyotsna and G. S. Agarwal, “Coherent population trapping at low light levels,” Phys. Rev. A 52(4), 3147–3152 (1995).
[Crossref] [PubMed]

Y. Q. Li and M. Xiao, “Transient properties of an electromagnetically induced transparency in three-level atoms,” Opt. Lett. 20(13), 1489–1491 (1995).
[Crossref] [PubMed]

1989 (1)

S. E. Harris and J. J. Macklin, “Lasers without inversion: Single-atom transient response,” Phys. Rev. A Gen. Phys. 40(7), 4135–4137 (1989).
[Crossref] [PubMed]

1975 (1)

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: transient and steady-state cases,” Phys. Rev. A 11(5), 1641–1649 (1975).
[Crossref]

1972 (1)

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6(6), 2001–2007 (1972).
[Crossref]

1971 (1)

R. G. Brewer and R. L. Shoemaker, “Photo echo and optical nutation in molecules,” Phys. Rev. Lett. 27(10), 631–634 (1971).
[Crossref]

1968 (1)

G. B. Hocker and C. L. Tang, “Observation of the optical transient nutation effect,” Phys. Rev. Lett. 21(9), 591–594 (1968).
[Crossref]

Agarwal, G. S.

I. V. Jyotsna and G. S. Agarwal, “Coherent population trapping at low light levels,” Phys. Rev. A 52(4), 3147–3152 (1995).
[Crossref] [PubMed]

Alzetta, G.

F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
[Crossref]

Arimondo, E.

F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
[Crossref]

Arnold, C. L.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Auyuanet, A.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Barreiro, S.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

Behbood, N.

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Bengtsson, S.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Breschi, E.

E. Breschi, Z. Grujić, and A. Weis, “In situ calibration of magnetic field coils using free-induction decay of atomic alignment,” Appl. Phys. B 115(1), 85–91 (2014).
[Crossref]

Brewer, R. G.

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: transient and steady-state cases,” Phys. Rev. A 11(5), 1641–1649 (1975).
[Crossref]

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6(6), 2001–2007 (1972).
[Crossref]

R. G. Brewer and R. L. Shoemaker, “Photo echo and optical nutation in molecules,” Phys. Rev. Lett. 27(10), 631–634 (1971).
[Crossref]

Cahn, S. B.

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

Camp, S.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Cartaleva, S.

F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
[Crossref]

Chen, J. F.

Cho, H.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
[Crossref]

Colangelo, G.

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Du, S.

Failache, H.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65(2), 023814 (2002).
[Crossref]

Florkowski, M.

R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
[Crossref]

Gaarde, M. B.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Grewal, R. S.

R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
[Crossref]

Grujic, Z.

E. Breschi, Z. Grujić, and A. Weis, “In situ calibration of magnetic field coils using free-induction decay of atomic alignment,” Appl. Phys. B 115(1), 85–91 (2014).
[Crossref]

Hahn, E. L.

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: transient and steady-state cases,” Phys. Rev. A 11(5), 1641–1649 (1975).
[Crossref]

Harris, S. E.

S. E. Harris and J. J. Macklin, “Lasers without inversion: Single-atom transient response,” Phys. Rev. A Gen. Phys. 40(7), 4135–4137 (1989).
[Crossref] [PubMed]

Hocker, G. B.

G. B. Hocker and C. L. Tang, “Observation of the optical transient nutation effect,” Phys. Rev. Lett. 21(9), 591–594 (1968).
[Crossref]

Ishikawa, K.

K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
[Crossref]

Jyotsna, I. V.

I. V. Jyotsna and G. S. Agarwal, “Coherent population trapping at low light levels,” Phys. Rev. A 52(4), 3147–3152 (1995).
[Crossref] [PubMed]

Kim, J.-T.

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

Kroon, D.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Kumarakrishnan, A.

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

Kwon, T. Y.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
[Crossref]

L’Huillier, A.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Larsen, E. W.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Lee, H. S.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
[Crossref]

Lenci, L.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

Lezama, A.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65(2), 023814 (2002).
[Crossref]

Li, Y. Q.

Loy, M. M. T.

Lu, W.

Macklin, J. J.

S. E. Harris and J. J. Macklin, “Lasers without inversion: Single-atom transient response,” Phys. Rev. A Gen. Phys. 40(7), 4135–4137 (1989).
[Crossref] [PubMed]

Margalit, L.

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherent-population-trapping transients induced by a modulated transverse magnetic field,” Phys. Rev. A 88(2), 023827 (2013).
[Crossref]

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherence-population-trapping transients induced by an ac magnetic field,” Phys. Rev. A 85(6), 063809 (2012).
[Crossref]

Martin Ciurana, F.

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Mauritsson, J.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Miranda, M.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Mitchell, M. W.

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Momeen, M. U.

M. U. Momeen, G. Rangarajan, and V. Natarajan, “Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell,” Phys. Rev. A 81(1), 013413 (2010).
[Crossref]

Napolitano, M.

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Natarajan, V.

M. U. Momeen, G. Rangarajan, and V. Natarajan, “Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell,” Phys. Rev. A 81(1), 013413 (2010).
[Crossref]

Park, S. J.

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
[Crossref]

Pustelny, S.

R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
[Crossref]

Rangarajan, G.

M. U. Momeen, G. Rangarajan, and V. Natarajan, “Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell,” Phys. Rev. A 81(1), 013413 (2010).
[Crossref]

Renzoni, F.

F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
[Crossref]

Rippe, L.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Rosenbluh, M.

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherent-population-trapping transients induced by a modulated transverse magnetic field,” Phys. Rev. A 88(2), 023827 (2013).
[Crossref]

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherence-population-trapping transients induced by an ac magnetic field,” Phys. Rev. A 85(6), 063809 (2012).
[Crossref]

Rybak, A.

R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
[Crossref]

Schafer, K. J.

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Sewell, R. J.

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Shim, U.

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

Shoemaker, R. L.

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6(6), 2001–2007 (1972).
[Crossref]

R. G. Brewer and R. L. Shoemaker, “Photo echo and optical nutation in molecules,” Phys. Rev. Lett. 27(10), 631–634 (1971).
[Crossref]

Sleator, T.

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

Takahashi, Y.

K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
[Crossref]

Tang, C. L.

G. B. Hocker and C. L. Tang, “Observation of the optical transient nutation effect,” Phys. Rev. Lett. 21(9), 591–594 (1968).
[Crossref]

Toyoda, K.

K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
[Crossref]

Valente, P.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65(2), 023814 (2002).
[Crossref]

Wang, S.

Weis, A.

E. Breschi, Z. Grujić, and A. Weis, “In situ calibration of magnetic field coils using free-induction decay of atomic alignment,” Appl. Phys. B 115(1), 85–91 (2014).
[Crossref]

Wilson-Gordon, A. D.

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherent-population-trapping transients induced by a modulated transverse magnetic field,” Phys. Rev. A 88(2), 023827 (2013).
[Crossref]

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherence-population-trapping transients induced by an ac magnetic field,” Phys. Rev. A 85(6), 063809 (2012).
[Crossref]

Wong, G. K. L.

Xiao, M.

Yabuzaki, T.

K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
[Crossref]

Appl. Phys. B (1)

E. Breschi, Z. Grujić, and A. Weis, “In situ calibration of magnetic field coils using free-induction decay of atomic alignment,” Appl. Phys. B 115(1), 85–91 (2014).
[Crossref]

Appl. Phys. Lett. (1)

N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

J. Phys. B (1)

L. Lenci, S. Barreiro, P. Valente, H. Failache, and A. Lezama, “A magnetometer suitable for measurement of the Earth’s field based on transient atomic response,” J. Phys. B 45(21), 215401 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

U. Shim, S. B. Cahn, A. Kumarakrishnan, T. Sleator, and J.-T. Kim, “Optical nutation in cold 85 Rb atoms,” Jpn. J. Appl. Phys. 44(1A1R), 168–173 (2005).
[Crossref]

Nat. Photonics (1)

S. Bengtsson, E. W. Larsen, D. Kroon, S. Camp, M. Miranda, C. L. Arnold, A. L’Huillier, K. J. Schafer, M. B. Gaarde, L. Rippe, and J. Mauritsson, “Space–time control of free induction decay in the extreme ultraviolet,” Nat. Photonics 11(4), 252–258 (2017).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (11)

I. V. Jyotsna and G. S. Agarwal, “Coherent population trapping at low light levels,” Phys. Rev. A 52(4), 3147–3152 (1995).
[Crossref] [PubMed]

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65(2), 023814 (2002).
[Crossref]

S. J. Park, H. Cho, T. Y. Kwon, and H. S. Lee, “Transient coherence oscillation induced by a detuned Raman field in a rubidium Λ system,” Phys. Rev. A 69(2), 023806 (2004).
[Crossref]

F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, “Enhanced absorption Hanle effect in the configuration of crossed laser beam and magnetic field,” Phys. Rev. A 63(6), 065401 (2001).
[Crossref]

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherence-population-trapping transients induced by an ac magnetic field,” Phys. Rev. A 85(6), 063809 (2012).
[Crossref]

L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, “Coherent-population-trapping transients induced by a modulated transverse magnetic field,” Phys. Rev. A 88(2), 023827 (2013).
[Crossref]

K. Toyoda, Y. Takahashi, K. Ishikawa, and T. Yabuzaki, “Optical free-induction decay of laser-cooled 85Rb,” Phys. Rev. A 56(2), 1564–1568 (1997).
[Crossref]

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6(6), 2001–2007 (1972).
[Crossref]

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: transient and steady-state cases,” Phys. Rev. A 11(5), 1641–1649 (1975).
[Crossref]

M. U. Momeen, G. Rangarajan, and V. Natarajan, “Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell,” Phys. Rev. A 81(1), 013413 (2010).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

R. S. Grewal, S. Pustelny, A. Rybak, and M. Florkowski, “Transient dynamics of a nonlinear magneto-optical rotation,” Phys. Rev. A (Coll. Park) 97(4), 043832 (2018).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

S. E. Harris and J. J. Macklin, “Lasers without inversion: Single-atom transient response,” Phys. Rev. A Gen. Phys. 40(7), 4135–4137 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

G. B. Hocker and C. L. Tang, “Observation of the optical transient nutation effect,” Phys. Rev. Lett. 21(9), 591–594 (1968).
[Crossref]

R. G. Brewer and R. L. Shoemaker, “Photo echo and optical nutation in molecules,” Phys. Rev. Lett. 27(10), 631–634 (1971).
[Crossref]

Other (1)

D. Budker, and D. F. J. Kimball, Optical magnetometry (Cambridge University, Published, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic diagram of optically pumped processing.
Fig. 2
Fig. 2 The schematic diagram of the experimental apparatus.
Fig. 3
Fig. 3 (a) Schematic diagram of a four-level atomic system driven by laser light and the radio frequency field. (b) Sequential turn-on scheme of the laser light ( Ω R ) and the radio frequency ( Ω R F ) field.
Fig. 4
Fig. 4 (a) The transmitted spectra intensity versus the RF frequency under the different RF field sweep rate. The laser power is 5 μW and the RF power is about 0.46 μW. (b) The numerically simulated signals under the different RF sweep rate.
Fig. 5
Fig. 5 The different RF field sweep direction. One is from 34 kHz to 36 kHz, the other is from 36 kHz to 34 kHz.
Fig. 6
Fig. 6 The transmitted spectra intensity versus the RF frequency when the sweep rate is 10 kHz/s. (a) For the different RF power (the laser power is 5 μW); (b) For the different laser power (the RF power is 0.12 μW); (c)-(d) The numerically simulated signals under the different Ω R F (when Ω R = 100 Hz ) and Ω R (when Ω RF = 100 Hz ).
Fig. 7
Fig. 7 (a) The transmitted spectra intensity distribution by suddenly turning on the RF field at t = 0 , the laser power is fixed as 5 μW. (b) The numerically simulated signals under the different Ω R F . (c) The decay time of the transient dynamics versus the Root of RF power. (d) The oscillation frequency of the transient dynamics versus the Root of RF power.
Fig. 8
Fig. 8 (a) The transmitted spectra intensity distribution by suddenly turning on the RF field at t = 0 , the RF power is fixed at 0.46 μW. (b) The numerically simulated signals under the different Ω R . (c) The decay time of the transient dynamics versus the laser power under three different RF power. (d)-(f) The oscillation frequency of the transient dynamics versus the laser power under three different RF power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H 0 = ω B | 2 2 | + 2 ω B | 3 3 | + ω c | 4 4 | H L = Ω R 2 ( | 1 4 | e i ω L t + | 4 1 | e i ω L t ) H F = Ω R F 2 ( | 1 2 | e i ω R F t + | 2 1 | e i ω R F t + | 2 3 | e i ω R F t + | 3 2 | e i ω R F t )
ρ ˙ = i h [ H , ρ ] + Γ ρ
ρ ˙ 11 = i Ω R F 2 ( ρ 21 ρ 12 ) + i Ω R 2 ( ρ 41 ρ 14 ) + 1 3 Γ s e ρ 44 + 1 2 Γ r f ρ 22 Γ r f ρ 11 Γ c ρ 11 ρ ˙ 12 = i Ω R F 2 ( ρ 22 ρ 11 ρ 13 ) + i Ω R 2 ρ 42 + i Δ R F ρ 12 Γ g ρ 12 ρ ˙ 13 = i Ω R F 2 ( ρ 23 ρ 12 ) + i Ω R 2 ρ 43 + 2 i Δ R F ρ 13 Γ g ρ 13 ρ ˙ 14 = i Ω R F 2 ρ 24 + i Ω R 2 ( ρ 44 ρ 11 ) + i Δ L ρ 14 Γ g e ρ 14 ρ ˙ 22 = i Ω R F 2 ( ρ 12 + ρ 32 ρ 21 ρ 23 ) + 1 3 Γ s e ρ 44 Γ r f ρ 22 + Γ r f ( ρ 11 + ρ 33 ) ρ ˙ 23 = i Ω R F 2 ( ρ 13 + ρ 33 ρ 22 ) + i Δ R F ρ 23 Γ g ρ 23 ρ ˙ 24 = i Ω R F 2 ( ρ 14 + ρ 34 ) i Ω R 2 ρ 21 i Δ R F ρ 24 + i Δ L ρ 24 Γ g e ρ 24 ρ ˙ 33 = i Ω R F 2 ( ρ 23 ρ 32 ) + 1 3 Γ s e ρ 44 Γ r f ρ 33 + 1 2 Γ r f ρ 22 ρ ˙ 34 = i Ω R F 2 ρ 24 i Ω R 2 ρ 31 2 i Δ R F ρ 34 + i Δ L ρ 34 Γ g e ρ 34 ρ ˙ 44 = i Ω R 2 ( ρ 41 ρ 14 ) Γ s e ρ 44 + Γ c ρ 11

Metrics