Abstract

We theoretically analyze and experimentally investigate the dependence of residual amplitude modulation (RAM) on the beam radius within the electro-optic crystal (EOC), the wedge angle of the EOC and the overlap efficiency between the extraordinary and ordinary beams, and the overlap efficiency is determined by the distance from the wedge facet to the downstream polarizer. The results show that the RAM with the maximum optical path difference Δ at the edge of light spot presents a sinc-like curve,and the magnitude of Δ is directly proportional to the beam radius and the wedge angle. As a scaling factor, with the decrease of the overlap efficiency between the ordinary and extraordinary beams, the RAM can be further reduced.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity dependent residual amplitude modulation in electro-optic phase modulators

Juna Sathian and Esa Jaatinen
Appl. Opt. 51(16) 3684-3691 (2012)

Suppressing residual amplitude modulation to the 10−7 level in optical phase modulation

Jin Bi, Yunlin Zhi, Liufeng Li, and Lisheng Chen
Appl. Opt. 58(3) 690-694 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
    [Crossref] [PubMed]
  2. J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
    [Crossref] [PubMed]
  3. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
    [Crossref]
  4. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
    [Crossref]
  5. L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
    [Crossref] [PubMed]
  6. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
    [Crossref] [PubMed]
  7. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
    [Crossref]
  8. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  9. T. Serikawa, J. Yoshikawa, K. Makino, and A. Frusawa, “Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator,” Opt. Express 24, 28383–28391 (2016).
    [Crossref] [PubMed]
  10. E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, “Ultra-low phase noise squeezed vacuum source for gravitational wave detectors,” Optica 3, 682–685 (2016).
    [Crossref]
  11. S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).
  12. Z. X. Li, X. C. Sun, Y. J. Wang, Y. H. Zheng, and K. C. Peng, “Investigation of residual amplitude modulation in squeezed state generation system,” Opt. Express 26, 18957–18968 (2018).
    [Crossref] [PubMed]
  13. W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42, 4553–4556 (2017).
    [Crossref] [PubMed]
  14. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [Crossref]
  15. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B,  2, 1527–1533 (1985).
    [Crossref]
  16. J. Sathian and E. Jaatinen ,“Intensity dependent residual amplitude modulation in electro-opticc phase modulators,” Appl. Opt. 51, 3684–3691 (2012).
    [Crossref] [PubMed]
  17. J. Sathian and E. Jaatinen, “Reducing residual amplitude modulation in electro-optic phase modulators by erasing photorefractive scatter,” Opt. Express 21, 12309–12317 (2013).
    [Crossref] [PubMed]
  18. P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10 −12 cm −1 Hz −1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
    [Crossref]
  19. K. Kokeyama, K. Izumi, W. Korth, N. Smith-Lffebvre, K. Arai, and R. Adhikari, “Residual amplitude modualtion in interferomatric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
    [Crossref]
  20. I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012).
    [Crossref]
  21. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [Crossref]
  22. H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
    [Crossref]
  23. Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
    [Crossref] [PubMed]
  24. Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
    [Crossref]
  25. L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
    [Crossref] [PubMed]
  26. W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
    [Crossref]
  27. F. Du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
    [Crossref]
  28. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
    [Crossref] [PubMed]
  29. L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
    [Crossref]
  30. H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, “Offset compensation by use of amplitude-modulated sidebands in optical frequency standards,” Opt. Lett. 28, 2186–2188 (2003).
    [Crossref] [PubMed]
  31. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [Crossref]
  32. A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
    [Crossref]
  33. Z. Y. Tai, L. L. Yan, Y. Y. Zhang, X. F. Zhang, W. G. Guo, S. G. Zhang, and H. F. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
    [Crossref] [PubMed]
  34. K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
    [Crossref] [PubMed]
  35. V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).
  36. J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).
  37. H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39, 1117–1120 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (5)

2015 (1)

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

2014 (5)

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

K. Kokeyama, K. Izumi, W. Korth, N. Smith-Lffebvre, K. Arai, and R. Adhikari, “Residual amplitude modualtion in interferomatric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
[Crossref]

H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39, 1117–1120 (2014).
[Crossref] [PubMed]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

2013 (3)

J. Sathian and E. Jaatinen, “Reducing residual amplitude modulation in electro-optic phase modulators by erasing photorefractive scatter,” Opt. Express 21, 12309–12317 (2013).
[Crossref] [PubMed]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

2012 (7)

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012).
[Crossref]

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10 −12 cm −1 Hz −1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[Crossref]

J. Sathian and E. Jaatinen ,“Intensity dependent residual amplitude modulation in electro-opticc phase modulators,” Appl. Opt. 51, 3684–3691 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

2008 (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

2006 (2)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

2003 (2)

F. Du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[Crossref]

H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, “Offset compensation by use of amplitude-modulated sidebands in optical frequency standards,” Opt. Lett. 28, 2186–2188 (2003).
[Crossref] [PubMed]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

1985 (2)

Adhikari, R.

K. Kokeyama, K. Izumi, W. Korth, N. Smith-Lffebvre, K. Arai, and R. Adhikari, “Residual amplitude modualtion in interferomatric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Arai, K.

Arain, M. A.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Aspelmeyer, M.

Ast, S.

Axner, O.

Barsotti, L.

E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, “Ultra-low phase noise squeezed vacuum source for gravitational wave detectors,” Optica 3, 682–685 (2016).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Basri, A. El

F. Du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[Crossref]

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Benko, C.

Bi, J.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

Bjorklund, G. C.

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Burck, F. Du

F. Du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[Crossref]

Chen, C. Y.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Chen, L. S.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Chen, Y. F.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Chen, Z.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Chua, S. S. Y.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Cole, G. D.

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Deng, Q. H.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Dong, L.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Dooley, K. L.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Dwyer, S.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Eberle, T.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Ehlers, P.

Evans, M.

E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, “Ultra-low phase noise squeezed vacuum source for gravitational wave detectors,” Optica 3, 682–685 (2016).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Factourovich, M.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Feldbaum, D.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Foltynowicz, A.

Fritschel, P.

Frolov, V. V.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Frusawa, A.

Fu, X. F.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Ge, J. H.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Gehrtz, M.

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Guo, W. G.

Gustafson, D.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Hagemann, C.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Hall, J. L.

Handchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Heintze, M.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Herrmann, S.

Hettich, C.

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Hoak, D.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Isogai, T.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Izumi, K.

Jaatinen, E.

Jia, S. T.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Jiang, H. F.

Kawabe, K.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Khalaidovski, A.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Khazanov, E. A.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Kimble, H. J.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Kokeyama, K.

Korth, W.

Kovalchuk, E.

Lam, P. K.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Landry, M.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Legero, T.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Li, L. F.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Li, Z. X.

Z. X. Li, X. C. Sun, Y. J. Wang, Y. H. Zheng, and K. C. Peng, “Investigation of residual amplitude modulation in squeezed state generation system,” Opt. Express 26, 18957–18968 (2018).
[Crossref] [PubMed]

Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
[Crossref] [PubMed]

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Lin, H. H.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Liu, F.

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Lopez, O.

F. Du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[Crossref]

Lu, H. D.

Lucianetti, A.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Lv, S. S.

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

Ma, W. G.

W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42, 4553–4556 (2017).
[Crossref] [PubMed]

Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
[Crossref] [PubMed]

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Makino, K.

Mansell, G.

Martin, M. J.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Martin, R.

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Martin, R. M.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Matichard, F.

Mavalvala, N.

E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, “Ultra-low phase noise squeezed vacuum source for gravitational wave detectors,” Optica 3, 682–685 (2016).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

McClelland, D. E.

E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, “Ultra-low phase noise squeezed vacuum source for gravitational wave detectors,” Optica 3, 682–685 (2016).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

McKenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Meadors, G. D.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Melholt Nielsen, B.

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Mikhailov, E. E.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Miller, J.

Miyakawa, O.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Mølmer, K.

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Mow-Lowry, C. M.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Mueller, G.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Müller, H.

Muller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Oelker, E.

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Palashov, O.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Peng, K. C.

Peters, A.

Polzik, E. S.

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Quetschke, V.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Quetschke, V. M.

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Reitze, D.

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Reitze, D. H.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Riehle, F.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Sathian, J.

Savage, R. L.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Schofield, R. M. S.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Scholz, M.

Schuldt, T.

Serikawa, T.

Shen, H.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

Shi, S. P.

Sigg, D.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Silander, I.

Smith-Lefebvre, N.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Smith-Lffebvre, N.

Stefszky, M.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Sterr, U.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Su, J.

Sui, Z.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Sun, X. C.

Tai, Z. Y.

Tan, W.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Tanner, D. B.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Tse, M.

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Vorvick, C.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Wang, C.

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Wang, J.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

Wang, J. J.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Wang, J. Y.

Wang, Y. J.

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Whittaker, E. A.

Williams, L.

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Williams, L. F.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Wong, N. C.

Wu, H. F.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

Wu, W.

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Yan, L. L.

Yang, W. H.

Ye, J.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Yin, W. B.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Yoshikawa, J.

Zhai, Y. F.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Zhang, J.

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Zhang, L.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Zhang, S. G.

Zhang, W.

Zhang, X. F.

Zhang, Y. Y.

Zhao, G.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

Zhao, L. H.

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

Zheng, Y. H.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. F. Li, H. Shen, J. Bi, C. Wang, S. S. Lv, and L. S. Chen, “Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation,” Appl. Phys. B 117,1025 (2014).
[Crossref]

Appl. Phys. Express (1)

W. G. Ma, Z. X. Li, W. Tan, G. Zhao, X. F. Fu, L. Zhang, L. Dong, W. B. Yin, and S. T. Jia, “Servo control of high degree of linear polarization output from polarization-maintaining fiber and its applicaiton in fiber-component based frequency modulation spectroscopy,” Appl. Phys. Express 6, 112501 (2013).
[Crossref]

IEEE Trans. Instrum. Meas (1)

F. Du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Mech. Aerosp. Eng. (1)

J. H. Ge, Z. Chen, Y. F. Chen, C. Y. Chen, Y. F. Zhai, J. Zhang, Z. Sui, H. H. Lin, J. J. Wang, and Q. H. Deng, “>Optimized design of parameters for wedge-crystal depolarizer,” Mech. Aerosp. Eng. 110–116, 3351–3357 (2012).

Nat. Photonics (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Nat. Phys. (2)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42, 4553–4556 (2017).
[Crossref] [PubMed]

Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
[Crossref] [PubMed]

Z. Y. Tai, L. L. Yan, Y. Y. Zhang, X. F. Zhang, W. G. Guo, S. G. Zhang, and H. F. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref] [PubMed]

H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39, 1117–1120 (2014).
[Crossref] [PubMed]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1×10 −6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, “Offset compensation by use of amplitude-modulated sidebands in optical frequency standards,” Opt. Lett. 28, 2186–2188 (2003).
[Crossref] [PubMed]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Lett. 21, 19047–19060 (2013).

Optica (1)

Phys. Rev. A (1)

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

Phys. Rev. Lett. (4)

J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Rev. Sci. Instrum. (2)

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
[Crossref] [PubMed]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger Kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Sens. Actuators B (1)

Z. X. Li, L. H. Zhao, W. Tan, W. G. Ma, G. Zhao, X. F. Fu, L. Dong, L. Zhang, W. B. Yin, and S. T. Jia, “Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique,” Sens. Actuators B 196, 23–30 (2014).
[Crossref]

Other (1)

V. M. Quetschke, W. Wu, L. Williams, M. A. Arain, R. Martin, D. Reitze, D. B. Tanner, and G. Mueller, “Method and apparatus for modulating light,” US Patent0164302 (July7, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Generation principle of RAM originating from the birefringence of the EOC. EOC: electro-optic crystal; P: polarizer.
Fig. 2
Fig. 2 RAM of the wedged EOM as a function of the maximum optical path difference Δ.
Fig. 3
Fig. 3 Experimental setup for measuring the RAM. EOM: electro-optical modulator; OI: optical isolator; GTP: Glan–Thompson polarizer; CL: concave lens or convex lens; TC: temperature controller; PD: photodetector; RFG: radio-frequency generator; DBM: doubly balanced mixer; DAC: data acquisition card.
Fig. 4
Fig. 4 Dependence of the RAM on the beam radius R at the wedge angle α of 0°, 0.5°, 1.5°, 4°.
Fig. 5
Fig. 5 Dependence of RAM on the distance d from the wedge facet.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ p a r a l l e l = 2 π λ ( n e n o ) l = 2 π λ ( μ e μ o ) δ T l ,
Δ ϕ w e d g e d = 2 π λ ( μ e μ o ) δ T ( l + 1 2 z Δ ) ,
V R A M = C η y 2 + z 2 = 1 exp  [ 2 ( y 2 + z 2 ) ] sin  [ 2 π λ ( μ e μ o ) δ T ( l + 1 2 z Δ ) ] d y d z ,

Metrics