Abstract

Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in an optical tapered fiber. NFBCs are promising candidates as a platform for photonic quantum information devices due to their small mode volume, ultra-high coupling efficiencies, and ultra-wide tunability. However, the quality (Q) factor has been limited to be approximately 250, which may be due to limitations in the fabrication process. Here we report high Q NFBCs fabricated using a focused helium ion beam. Whenan NFBC with grooves of 640 periods is fabricated, the Q factor is over 4170, which is more than 16 times larger than that previously fabricated using a focused gallium ion beam.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity

Hideaki Takashima, Masazumi Fujiwara, Andreas W. Schell, and Shigeki Takeuchi
Opt. Express 24(13) 15050-15058 (2016)

Cavity formation on an optical nanofiber using focused ion beam milling technique

K. P. Nayak, Fam Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto
Opt. Express 19(15) 14040-14050 (2011)

a-SiOx<Er> active photonic crystal resonator membrane fabricated by focused Ga+ ion beam

David S. L. Figueira, Luis A. M. Barea, Felipe Vallini, Paulo F. Jarschel, Rossano Lang, and Newton C. Frateschi
Opt. Express 20(17) 18772-18783 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, L. Yang, and S. Fainman, “Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref] [PubMed]
  2. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
    [Crossref] [PubMed]
  3. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  4. S. Takeuchi, “Recent progress in single-photon and entangled-photon generation and applications,” Jpn. J. Appl. Phys. 53, 030101 (2014).
    [Crossref]
  5. H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
    [Crossref]
  6. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
    [Crossref] [PubMed]
  7. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
    [Crossref]
  8. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
    [Crossref] [PubMed]
  9. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  10. H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
    [Crossref]
  11. F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  12. M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
    [Crossref] [PubMed]
  13. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
    [Crossref] [PubMed]
  14. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref] [PubMed]
  15. K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
    [Crossref] [PubMed]
  16. A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17, 21704–21711 (2009).
    [Crossref] [PubMed]
  17. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [Crossref] [PubMed]
  18. L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
    [Crossref]
  19. X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
    [Crossref]
  20. I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, A. O. Levchenko, S. A. Zibrov, S. Blakley, H. Perez, A. V. Akimov, A. B. Fedotov, P. Hemmer, K. Sakoda, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-optic magnetometry with randomly oriented spins,” Opt. Lett. 39, 6755–6758 (2014).
    [Crossref] [PubMed]
  21. A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
    [Crossref]
  22. K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39, 232–235 (2014).
    [Crossref] [PubMed]
  23. J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
    [Crossref] [PubMed]
  24. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [Crossref] [PubMed]
  25. A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
    [Crossref] [PubMed]
  26. W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
    [Crossref]
  27. H. Takashima, M. Fujiwara, A. W. Schell, and S. Takeuchi, “Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity,” Opt. Express 24, 15050–15058 (2016).
    [Crossref] [PubMed]
  28. W. Li, J. Du, and S. N. Chormaic, “Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters,” Opt. Lett. 43, 1674–1677 (2018).
    [Crossref] [PubMed]
  29. B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 2871–2874 (2006).
    [Crossref]
  30. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
    [Crossref]
  31. L. Andreani and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60, 13276–13279 (1999).
    [Crossref]
  32. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
    [Crossref] [PubMed]
  33. Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
    [Crossref]
  34. F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
    [Crossref]
  35. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
    [Crossref]
  36. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
    [Crossref] [PubMed]
  37. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
    [Crossref]

2018 (2)

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

W. Li, J. Du, and S. N. Chormaic, “Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters,” Opt. Lett. 43, 1674–1677 (2018).
[Crossref] [PubMed]

2017 (4)

W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

2014 (6)

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, A. O. Levchenko, S. A. Zibrov, S. Blakley, H. Perez, A. V. Akimov, A. B. Fedotov, P. Hemmer, K. Sakoda, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-optic magnetometry with randomly oriented spins,” Opt. Lett. 39, 6755–6758 (2014).
[Crossref] [PubMed]

K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39, 232–235 (2014).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

S. Takeuchi, “Recent progress in single-photon and entangled-photon generation and applications,” Jpn. J. Appl. Phys. 53, 030101 (2014).
[Crossref]

2013 (1)

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

2012 (4)

F. Vollmer, L. Yang, and S. Fainman, “Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

2011 (4)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2006 (3)

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[Crossref] [PubMed]

B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 2871–2874 (2006).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

2005 (2)

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
[Crossref] [PubMed]

2004 (1)

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

2002 (1)

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

2001 (1)

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

1999 (1)

L. Andreani and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

1992 (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref] [PubMed]

Aharonovich, I.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Akimov, A. V.

Almokhtar, M.

Andreani, L.

L. Andreani and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

Balykin, V. I.

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Benson, O.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

Blakley, S.

Borselli, M.

Burchardt, D.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Chormaic, S. N.

W. Li, J. Du, and S. N. Chormaic, “Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters,” Opt. Lett. 43, 1674–1677 (2018).
[Crossref] [PubMed]

W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Cui, J.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Doronina-Amitonova, L. V.

Du, J.

W. Li, J. Du, and S. N. Chormaic, “Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters,” Opt. Lett. 43, 1674–1677 (2018).
[Crossref] [PubMed]

W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Economou, N. P.

B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 2871–2874 (2006).
[Crossref]

Fainman, S.

F. Vollmer, L. Yang, and S. Fainman, “Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Fedotov, A. B.

Fedotov, I. V.

Feng, F.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Figueroa, E.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Fujiwara, H.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

Fujiwara, M.

Garcia-Fernandez, R.

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Gupta, S. D.

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hakuta, K.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
[Crossref] [PubMed]

K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39, 232–235 (2014).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hemmer, P.

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Hofmann, H. F.

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
[Crossref]

Hugonin, J. P.

Iida, K.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

Kamioka, S.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Kawai, Y.

Keloth, J.

Kien, F. Le

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Kitajima, K.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

Krishna, S.

Krueger, A.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Lalanne, P.

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
[Crossref] [PubMed]

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

Lecamp, G.

Levchenko, A. O.

Li, W.

W. Li, J. Du, and S. N. Chormaic, “Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters,” Opt. Lett. 43, 1674–1677 (2018).
[Crossref] [PubMed]

W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Liu, F.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Liu, X.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Loncar, M.

Lou, J.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Lou, L.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Luo, W.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

Ma, E.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

McCutcheon, M. W.

Meinhardt, T.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Miyanaga, A.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

Miyazaki, H. T.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Münchow, A. V.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Nakajima, K.

Nayak, K. P.

Noda, T.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Nölleke, C.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Notte, J. A.

B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 2871–2874 (2006).
[Crossref]

Oe, Y.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Oka, H.

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
[Crossref]

Painter, O.

Palamaru, M.

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

Panzarini, G.

L. Andreani and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Perez, H.

Petersen, F.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Qin, Y.-B.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Rauschenbeutel, A.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17, 21704–21711 (2009).
[Crossref] [PubMed]

Rehband, O.

Reiserer, A.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Rempe, G.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Ritter, S.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Safronov, N. A.

Sakoda, K.

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Sasaki, K.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
[Crossref]

Sauvan, C.

Schell, A. W.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

H. Takashima, M. Fujiwara, A. W. Schell, and S. Takeuchi, “Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity,” Opt. Express 24, 15050–15058 (2016).
[Crossref] [PubMed]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Schröder, T.

Scully, M. O.

Shafi, K. M.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

Shan, Z.-W.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Sidorov-Biryukov, D. A.

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Song, X.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Specht, H. P.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Srinivasan, K.

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17, 21704–21711 (2009).
[Crossref] [PubMed]

Stintz, A.

Sugimoto, Y.

Sun, F.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Takashima, H.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

H. Takashima, M. Fujiwara, A. W. Schell, and S. Takeuchi, “Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity,” Opt. Express 24, 15050–15058 (2016).
[Crossref] [PubMed]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

Takeuchi, S.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

H. Takashima, M. Fujiwara, A. W. Schell, and S. Takeuchi, “Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity,” Opt. Express 24, 15050–15058 (2016).
[Crossref] [PubMed]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

S. Takeuchi, “Recent progress in single-photon and entangled-photon generation and applications,” Jpn. J. Appl. Phys. 53, 030101 (2014).
[Crossref]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[Crossref] [PubMed]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
[Crossref]

Tanaka, Y.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

Tashima, T.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Tian, L.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Tong, L.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Toubaru, K.

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Tran, T. T.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Truong, V. G.

W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Tsutsumi, E.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

Uphoff, M.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Velichansky, V. L.

Vollmer, F.

F. Vollmer, L. Yang, and S. Fainman, “Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Wang, G.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Wang, J.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Wang, J.-T.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Wang, Y.-C.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Ward, B. W.

B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 2871–2874 (2006).
[Crossref]

Weber, M.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Yalla, R.

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Yang, L.

F. Vollmer, L. Yang, and S. Fainman, “Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Yokoyama, H.

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zhang, P.

Zhao, H.-Q.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Zheltikov, A. M.

Zheng, G.

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Zhu, W.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Zibrov, S. A.

ACS Photonics (1)

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Appl. Phys. Lett. (5)

W. Li, J. Du, V. G. Truong, and S. N. Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466–1468 (2001).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 2871–2874 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Takeuchi, “Recent progress in single-photon and entangled-photon generation and applications,” Jpn. J. Appl. Phys. 53, 030101 (2014).
[Crossref]

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43, 7495–7500 (2004).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer, L. Yang, and S. Fainman, “Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Opt. Express (9)

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

H. Takashima, M. Fujiwara, A. W. Schell, and S. Takeuchi, “Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity,” Opt. Express 24, 15050–15058 (2016).
[Crossref] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
[Crossref] [PubMed]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14, 1094–1105 (2006).
[Crossref] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
[Crossref]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17, 21704–21711 (2009).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (3)

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[Crossref]

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupled microspherical cavity,” Phys. Rev. A 89, 021801 (2014).
[Crossref]

F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Phys. Rev. B (1)

L. Andreani and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

Phys. Rev. Lett. (2)

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

K. M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, and K. Hakuta, “Hybrid System of an Optical Nanofibre and a Single Quantum Dot Operated at Cryogenic Temperatures,” Sci. Rep. 8, 13494 (2018).
[Crossref] [PubMed]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Science (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref] [PubMed]

Small (1)

Y.-C. Wang, L. Tian, F. Liu, Y.-B. Qin, G. Zheng, J.-T. Wang, E. Ma, and Z.-W. Shan, “Helium Ion Microscope Fabrication Causing Changes in the Structure and Mechanical Behavior of Silicon Micropillars,” Small 13, 1601753 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Photograph of the NFBC fixed on a U-shaped metal holder. (b) Schematic illustration of the He FIB.
Fig. 2
Fig. 2 (a) Schematic illustration of the NFBC. (b) SIM image of the NFBC. The scale bar is 1 μm.
Fig. 3
Fig. 3 (a) Normalized transmission spectrum for the NFBC fabricated using the He FIB. The numbers of the grooves is 160. (b) Calculated transmission spectrum. The inset shows the electric field distribution at the resonant wavelength using the 3D FDTD simulation. The scale bar is 1 μm. (c) Normalized transmission spectrum for the NFBC fabricated using the Ga FIB.
Fig. 4
Fig. 4 (a) Measured transmission spectrum and (b) calculated transmission spectrum for an NFBC with 320 grooves.
Fig. 5
Fig. 5 Normalized transmission spectrum for an NFBC with 640 grooves.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = 3 4 π 2 ( λ n ) 3 Q V eff ,
V eff = V ϵ ( r ) | E ( r ) | 2 d 3 r max [ ϵ ( r ) | E ( r ) | 2 ] ,
η = P γ f γ 0 + P γ f ,

Metrics