Abstract

The existing quantum dot temperature measurement techniques can only measure the planar temperature in the cell but fails in 3D temperature investigation. We present a novel method of measuring the 3D temperature field on nano scale, combining fluorescence spectral characteristics of the CdTe quantum dot probe with optical spatial positioning. Based on dual-helix point spread function, a 3D temperature optical measurement system with a resolution of 0.625 °C is established, providing a new perspective of 3D temperature measurement inside the cell. We thus offer an original research tool for further revealing the evolution process of secretions in cell metabolism.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution

Jian Wu, Xiaojin Yin, Wenyuan Wang, Xueming Hong, Yu Du, Youfu Geng, and Xuejin Li
Appl. Opt. 55(5) 974-978 (2016)

Collecting quantum dot fluorescence with a hybrid plasmonic probe

Ming Li, Xiao Xiong, Le Yu, Chang-Ling Zou, Yang Chen, Di Liu, Lan-Tian Feng, Guo-Ping Guo, Guang-Can Guo, and Xi-Feng Ren
OSA Continuum 2(3) 881-889 (2019)

Remote and autonomous temperature measurement based on 3D liquid crystal microlasers

Gregor Pirnat, Matjaž Humar, and Igor Muševič
Opt. Express 26(18) 22615-22625 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
    [Crossref] [PubMed]
  2. G. Buckton and A. E. Beezer, “the applications of microcalorimetry in the field of physical pharmacy,” Int. J. Pharm. 72(3), 181–191 (1991).
    [Crossref]
  3. T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
    [Crossref] [PubMed]
  4. M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
    [Crossref] [PubMed]
  5. Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
    [Crossref]
  6. O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
    [Crossref]
  7. Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
    [Crossref]
  8. C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
    [Crossref] [PubMed]
  9. C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
    [Crossref] [PubMed]
  10. O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
    [Crossref] [PubMed]
  11. M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
    [Crossref] [PubMed]
  12. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
    [Crossref]
  13. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
    [Crossref] [PubMed]
  14. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
    [Crossref]
  15. W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
    [Crossref] [PubMed]
  16. A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
    [Crossref]
  17. P. V. Kamat, “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
    [Crossref]
  18. N. N. Ledentsov, “Quantum Dot Laser,” Semicond. Sci. Tech. 26(1), 14001 (2011).
    [Crossref]
  19. X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
    [Crossref] [PubMed]
  20. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
    [Crossref] [PubMed]
  21. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
    [Crossref] [PubMed]
  22. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
    [Crossref] [PubMed]
  23. S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
    [Crossref] [PubMed]
  24. C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
    [Crossref]
  25. B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
    [Crossref] [PubMed]
  26. A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
    [Crossref]
  27. S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
    [Crossref] [PubMed]
  28. L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
    [Crossref] [PubMed]
  29. H. Sakaue, “Luminophore application method of anodized aluminum pressure sensitive paint as a fast responding global pressure sensor,” Rev. Sci. Instrum. 76(8), 84101 (2005).
    [Crossref]
  30. H. Sakaue, A. Aikawa, and Y. Iijima, “Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K,” Sens. Actuators B Chem. 150(2), 569–573 (2010).
    [Crossref]
  31. V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
  32. J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
    [Crossref]
  33. Y. Li and B. Q. Li, “Use of CdTe quantum dots for high temperature thermal sensing,” RSC Advances 4(47), 24612–24618 (2014).
    [Crossref]
  34. H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
    [Crossref] [PubMed]
  35. S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
    [Crossref] [PubMed]
  36. E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
    [Crossref] [PubMed]
  37. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
    [Crossref] [PubMed]
  38. P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
    [Crossref] [PubMed]
  39. A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
    [Crossref] [PubMed]
  40. N. Vyhnan and Y. Khalavka, “Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots,” Luminescence 29(7), 952–954 (2014).
    [Crossref] [PubMed]
  41. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  42. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, 2007).
  43. B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
    [Crossref]
  44. J. Lee, E. S. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K,” Phys. Rev. B Condens. Matter 33(8), 5512–5516 (1986).
    [Crossref] [PubMed]
  45. H. Bao, E. Wang, and S. Dong, “One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites,” Small 2(4), 476–480 (2006).
    [Crossref] [PubMed]
  46. G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [Crossref]
  47. M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
    [Crossref]
  48. R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A 17(2), 294–303 (2000).
    [Crossref] [PubMed]

2018 (4)

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
[Crossref]

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

2017 (2)

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

2014 (3)

Y. Li and B. Q. Li, “Use of CdTe quantum dots for high temperature thermal sensing,” RSC Advances 4(47), 24612–24618 (2014).
[Crossref]

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

N. Vyhnan and Y. Khalavka, “Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots,” Luminescence 29(7), 952–954 (2014).
[Crossref] [PubMed]

2013 (6)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
[Crossref]

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

2012 (3)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

2011 (4)

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

N. N. Ledentsov, “Quantum Dot Laser,” Semicond. Sci. Tech. 26(1), 14001 (2011).
[Crossref]

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

2010 (4)

S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
[Crossref] [PubMed]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

H. Sakaue, A. Aikawa, and Y. Iijima, “Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K,” Sens. Actuators B Chem. 150(2), 569–573 (2010).
[Crossref]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

2009 (2)

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

2008 (1)

P. V. Kamat, “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

2007 (2)

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
[Crossref] [PubMed]

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

2006 (1)

H. Bao, E. Wang, and S. Dong, “One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites,” Small 2(4), 476–480 (2006).
[Crossref] [PubMed]

2005 (4)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

H. Sakaue, “Luminophore application method of anodized aluminum pressure sensitive paint as a fast responding global pressure sensor,” Rev. Sci. Instrum. 76(8), 84101 (2005).
[Crossref]

2003 (3)

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
[Crossref] [PubMed]

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

2002 (1)

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[Crossref]

2000 (1)

1998 (1)

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

1997 (1)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

1995 (1)

C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
[Crossref] [PubMed]

1991 (1)

G. Buckton and A. E. Beezer, “the applications of microcalorimetry in the field of physical pharmacy,” Int. J. Pharm. 72(3), 181–191 (1991).
[Crossref]

1986 (1)

J. Lee, E. S. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K,” Phys. Rev. B Condens. Matter 33(8), 5512–5516 (1986).
[Crossref] [PubMed]

Aikawa, A.

H. Sakaue, A. Aikawa, and Y. Iijima, “Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K,” Sens. Actuators B Chem. 150(2), 569–573 (2010).
[Crossref]

Alessandri, K.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Alkon, D. L.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Alt, A.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Amaratunga, G.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Aonbangkhen, C.

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

Arregui, F. J.

J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
[Crossref]

Bachmann, A.

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
[Crossref]

Bae, W. K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Baiyasi, R.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Ballister, E. R.

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

Bang, J.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Bao, H.

H. Bao, E. Wang, and S. Dong, “One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites,” Small 2(4), 476–480 (2006).
[Crossref] [PubMed]

Bawendi, M. G.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Beezer, A. E.

G. Buckton and A. E. Beezer, “the applications of microcalorimetry in the field of physical pharmacy,” Int. J. Pharm. 72(3), 181–191 (1991).
[Crossref]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Bicknell, R.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Bohatier, J.

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

Bon, P.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Bonkat, G.

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
[Crossref]

Bonnet, J.-L.

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

Botchway, S. W.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Braissant, O.

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
[Crossref]

Bravo, J.

J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
[Crossref]

Bricheux, G.

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

Brun, R.

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Buckton, G.

G. Buckton and A. E. Beezer, “the applications of microcalorimetry in the field of physical pharmacy,” Int. J. Pharm. 72(3), 181–191 (1991).
[Crossref]

Bulovic, V.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Cao, Y.-C.

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Capobianco, J. A.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Carrod, A. J.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Chae, J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Chapman, C. F.

C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
[Crossref] [PubMed]

Char, K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Chen, L.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Chenoweth, D. M.

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

Cho, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Cho, K.-S.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Choi, B. L.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Choi, J. H.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Chon, B.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Claire, S.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Cognet, L.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Corres, J. M.

J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
[Crossref]

Crisp, M. T.

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Dehghani, H.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Donderis, J.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Dong, S.

H. Bao, E. Wang, and S. Dong, “One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites,” Small 2(4), 476–480 (2006).
[Crossref] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Dosumu, A. N.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Dupont, A.

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

Elbaum, D.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Fang, B.-Y.

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Feng, H.

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

Feyeux, M.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Funatsu, T.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Gao, X.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

García-Caballer, M.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Ghaderi, S.

S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
[Crossref] [PubMed]

Glen, V. C. S.

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Goicoechea, J.

J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
[Crossref]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Gota, C.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

Hannon, M. J.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Harada, Y.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

Hodges, N. J.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Huang, S.

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

Huang, Y.

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

Iijima, Y.

H. Sakaue, A. Aikawa, and Y. Iijima, “Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K,” Sens. Actuators B Chem. 150(2), 569–573 (2010).
[Crossref]

Ikeda, M.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Inoue, H.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Ishiwata, S.

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
[Crossref] [PubMed]

Jaiswal, J. K.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
[Crossref] [PubMed]

Jaque, D.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Jeong, C.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Joo, T.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Juarranz, A.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Kamat, P. V.

P. V. Kamat, “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

Keshtgar, M.

S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
[Crossref] [PubMed]

Khalavka, Y.

N. Vyhnan and Y. Khalavka, “Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots,” Luminescence 29(7), 952–954 (2014).
[Crossref] [PubMed]

Kim, D. H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, J. M.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, J. W.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, S.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Kim, T.-H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

King, S. M.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Koteles, E. S.

J. Lee, E. S. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K,” Phys. Rev. B Condens. Matter 33(8), 5512–5516 (1986).
[Crossref] [PubMed]

Kotov, N. A.

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

Kuk, Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kumar, A.

A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
[Crossref]

Kumar, S.

A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
[Crossref]

Kumari, A.

A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
[Crossref]

Kwak, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Kwon, J.-Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

la Cruz, M. C.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Lamb, D. C.

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

Lampson, M. A.

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

Landes, C. F.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Ledentsov, N. N.

N. N. Ledentsov, “Quantum Dot Laser,” Semicond. Sci. Tech. 26(1), 14001 (2011).
[Crossref]

Lee, C.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Lee, D.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Lee, E. K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, J.

J. Lee, E. S. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K,” Phys. Rev. B Condens. Matter 33(8), 5512–5516 (1986).
[Crossref] [PubMed]

Lee, J.-B.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Lee, S.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Lee, S. J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, S. Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Li, B. Q.

Y. Li and B. Q. Li, “Use of CdTe quantum dots for high temperature thermal sensing,” RSC Advances 4(47), 24612–24618 (2014).
[Crossref]

Li, C.

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Li, P.

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

Li, S.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

Li, Y.

Y. Li and B. Q. Li, “Use of CdTe quantum dots for high temperature thermal sensing,” RSC Advances 4(47), 24612–24618 (2014).
[Crossref]

Lim, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Lin, L.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

Linarès-Loyez, J.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Liu, Y.

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
[Crossref] [PubMed]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Lounis, B.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Ma, Y.

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

Maestro, L. M.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Marina, A.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Marshall, F. F.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

Matias, I. R.

J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
[Crossref]

Mattoussi, H.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
[Crossref] [PubMed]

Mauro, J. M.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
[Crossref] [PubMed]

Mayo, A. M.

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

Medintz, I. L.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Mei, Z.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Mir-Sanchis, I.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Moerner, W. E.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Morel, J.-P.

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

Morel-Desrosiers, N.

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

Moringo, N.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Naccache, R.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Nakamura, H.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Nam, M. K.

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

Nassoy, P.

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Nie, S.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

Nocera, D. G.

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Nozik, A. J.

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[Crossref]

Okabe, K.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

Oyama, K.

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
[Crossref] [PubMed]

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Park, J.

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

Park, M.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Penadés, J. R.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Petros, J. A.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

Piestun, R.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A 17(2), 294–303 (2000).
[Crossref] [PubMed]

Pikramenou, Z.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Qian, Z.

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

Qiu, L.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Ren, Y.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Rizvi, S. B.

S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
[Crossref] [PubMed]

Rodríguez, E. M.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Rodríguez, F. S.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Rudzinski, C. M.

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Sahu, S. K.

A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
[Crossref]

Sakaue, H.

H. Sakaue, A. Aikawa, and Y. Iijima, “Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K,” Sens. Actuators B Chem. 150(2), 569–573 (2010).
[Crossref]

H. Sakaue, “Luminophore application method of anodized aluminum pressure sensitive paint as a fast responding global pressure sensor,” Rev. Sci. Instrum. 76(8), 84101 (2005).
[Crossref]

Schechner, Y. Y.

Scheurer, C.

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Seifalian, A. M.

S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
[Crossref] [PubMed]

Shamir, J.

Shen, H.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Shinagawa, H.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Shirasaki, Y.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Shuang, B.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Simon, S. M.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
[Crossref] [PubMed]

Simons, J. W.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

Solé, J. G.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Sonek, G. J.

C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
[Crossref] [PubMed]

Song, Y.-Y.

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Steinhuber, A.

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Su, W.

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Supran, G. J.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Suzuki, M.

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
[Crossref] [PubMed]

Tan, F.

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Tang, C.

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

Tauzin, L. J.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Teixeira, R. I.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Tormo-Más, M. Á.

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Trampuz, A.

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Tromberg, B. J.

C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
[Crossref] [PubMed]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Tseeb, V.

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
[Crossref] [PubMed]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Uchiyama, S.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

Uyeda, H. T.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Vassell, M. O.

J. Lee, E. S. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K,” Phys. Rev. B Condens. Matter 33(8), 5512–5516 (1986).
[Crossref] [PubMed]

Vetrone, F.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

Vyhnan, N.

N. Vyhnan and Y. Khalavka, “Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots,” Luminescence 29(7), 952–954 (2014).
[Crossref] [PubMed]

Walker, W.

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Wang, E.

H. Bao, E. Wang, and S. Dong, “One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites,” Small 2(4), 476–480 (2006).
[Crossref] [PubMed]

Wang, W.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Ward, A. D.

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Wenzler, T.

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Wirz, D.

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
[Crossref]

Wittlin, S.

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Woo, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Wun, A. W.

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Xiao, Q.

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

Xiao, X.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Yan, D.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Yan, Y.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Yang, H.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

Yang, J.-M.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

Yang, L.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

Yoshioka, T.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Zhang, K.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

Zhang, P.

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Zhao, Y.-D.

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Zhou, J.

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

Zohar, O.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

Acta Pharm. Sin. B (1)

Y. Ren, P. Zhang, D. Yan, Y. Yan, L. Chen, L. Qiu, Z. Mei, and X. Xiao, “Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang),” Acta Pharm. Sin. B 2(3), 278–285 (2012).
[Crossref]

Appl. Phys. Lett. (1)

V. C. S. Glen, W. Walker, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot_optical_temperature_probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).

Biophys. J. (2)

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka, “Thermal imaging of receptor-activated heat production in single cells,” Biophys. J. 74(1), 82–89 (1998).
[Crossref] [PubMed]

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata, “Microscopic detection of thermogenesis in a single HeLa cell,” Biophys. J. 92(6), L46–L48 (2007).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, and Y.-D. Zhao, “Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells,” Biosens. Bioelectron. 100, 41–48 (2018).
[Crossref] [PubMed]

Chem. Rev. (1)

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single Particle Tracking: From Theory to Biophysical Applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[Crossref] [PubMed]

Ecotoxicol. Environ. Saf. (1)

G. Bricheux, J.-L. Bonnet, J. Bohatier, J.-P. Morel, and N. Morel-Desrosiers, “Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis,” Ecotoxicol. Environ. Saf. 98, 88–94 (2013).
[Crossref] [PubMed]

Int. J. Pharm. (1)

G. Buckton and A. E. Beezer, “the applications of microcalorimetry in the field of physical pharmacy,” Int. J. Pharm. 72(3), 181–191 (1991).
[Crossref]

J. Am. Chem. Soc. (2)

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[Crossref] [PubMed]

S. M. King, S. Claire, R. I. Teixeira, A. N. Dosumu, A. J. Carrod, H. Dehghani, M. J. Hannon, A. D. Ward, R. Bicknell, S. W. Botchway, N. J. Hodges, and Z. Pikramenou, “Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells,” J. Am. Chem. Soc. 140(32), 10242–10249 (2018).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, and H. Feng, “A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: beta-galactosidase activity detection in vitro and in living cells,” J. Mater. Chem. B Mater. Biol. Med. 5(10), 1971–1979 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (2)

B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, T. Joo, and S. Kim, “Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots,” J. Phys. Chem. C 115(2), 436–442 (2011).
[Crossref]

P. V. Kamat, “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters,” J. Phys. Chem. C 112(48), 18737–18753 (2008).
[Crossref]

Luminescence (1)

N. Vyhnan and Y. Khalavka, “Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots,” Luminescence 29(7), 952–954 (2014).
[Crossref] [PubMed]

Mol. Cell (1)

M. Á. Tormo-Más, J. Donderis, M. García-Caballer, A. Alt, I. Mir-Sanchis, A. Marina, and J. R. Penadés, “Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism,” Mol. Cell 49(5), 947–958 (2013).
[Crossref] [PubMed]

Nano Lett. (5)

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7(10), 3102–3105 (2007).
[Crossref] [PubMed]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10(12), 5109–5115 (2010).
[Crossref] [PubMed]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref] [PubMed]

W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method,” Nano Lett. 10(7), 2368–2373 (2010).
[Crossref] [PubMed]

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

Nano Rev. (1)

S. B. Rizvi, S. Ghaderi, M. Keshtgar, and A. M. Seifalian, “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano Rev. 1(1), 5161 (2010).
[Crossref] [PubMed]

Nanoscale (1)

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, and D. M. Chenoweth, “Localized light-induced protein dimerization in living cells using a photocaged dimerizer,” Nat. Commun. 5, 5475 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Nat. Methods (1)

P. Bon, J. Linarès-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3D super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Photochem. Photobiol. (1)

C. F. Chapman, Y. Liu, G. J. Sonek, and B. J. Tromberg, “The use of exogenous fluorescent probes for temperature measurements in single living cells,” Photochem. Photobiol. 62(3), 416–425 (1995).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

J. Lee, E. S. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K,” Phys. Rev. B Condens. Matter 33(8), 5512–5516 (1986).
[Crossref] [PubMed]

Physica E (1)

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[Crossref]

PLoS Negl. Trop. Dis. (1)

T. Wenzler, A. Steinhuber, S. Wittlin, C. Scheurer, R. Brun, and A. Trampuz, “Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum,” PLoS Negl. Trop. Dis. 6(6), e1668 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

H. Sakaue, “Luminophore application method of anodized aluminum pressure sensitive paint as a fast responding global pressure sensor,” Rev. Sci. Instrum. 76(8), 84101 (2005).
[Crossref]

RSC Advances (1)

Y. Li and B. Q. Li, “Use of CdTe quantum dots for high temperature thermal sensing,” RSC Advances 4(47), 24612–24618 (2014).
[Crossref]

Science (2)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Semicond. Sci. Tech. (1)

N. N. Ledentsov, “Quantum Dot Laser,” Semicond. Sci. Tech. 26(1), 14001 (2011).
[Crossref]

Sens. Actuators B Chem. (2)

H. Sakaue, A. Aikawa, and Y. Iijima, “Anodized-aluminum as quantum dot support for global temperature sensing from 100 to 500 K,” Sens. Actuators B Chem. 150(2), 569–573 (2010).
[Crossref]

A. Kumari, A. Kumar, S. K. Sahu, and S. Kumar, “Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging,” Sens. Actuators B Chem. 254, 197–205 (2018).
[Crossref]

Small (1)

H. Bao, E. Wang, and S. Dong, “One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites,” Small 2(4), 476–480 (2006).
[Crossref] [PubMed]

Thermochim. Acta (2)

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, “Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data,” Thermochim. Acta 555, 64–71 (2013).
[Crossref]

Q. Xiao, S. Huang, W. Su, P. Li, and Y. Liu, “Evaluate the potential toxicity of quantum dots on bacterial metabolism by microcalorimetry,” Thermochim. Acta 552, 98–105 (2013).
[Crossref]

Other (2)

J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique,” in Third European Workshop on Optical Fibre Sensors, 6619, 661919 (2007).
[Crossref]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer US, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Principle of layer-by-layer self-assembly process.
Fig. 2
Fig. 2 Pictures of the prepared quantum dot film. (a) Under sunlight and (b) UV light.
Fig. 3
Fig. 3 Principle and picture of the established fluorescence detection system. (a) Principle of the system. (b) Picture of the system.
Fig. 4
Fig. 4 Fluorescence spectra of the prepared CdTe quantum dot composite film in thermal cycles.
Fig. 5
Fig. 5 Variation curves of the peak wavelengths of the fluorescence spectra of the prepared quantum dot film with temperature. (a) In the first thermal cycling process and (b) The second thermal cycling process.
Fig. 6
Fig. 6 Variation curves of the fluorescence intensity of the prepared quantum dot film with temperature. (a) In the first thermal cycling process and (b) The second thermal cycling process.
Fig. 7
Fig. 7 Variation curves of the half-peak widths of the fluorescence spectra of the prepared quantum dot film with temperature. (a) In the first thermal cycling process. (b) The second thermal cycling process.
Fig. 8
Fig. 8 Temperature characteristics of the peak wavelength of the fluorescence spectrum of the prepared quantum dot in multiple thermal cycles.
Fig. 9
Fig. 9 Illustration of the defocusing in object space.
Fig. 10
Fig. 10 Defocusing images under pure phase modulation function.
Fig. 11
Fig. 11 Variation the rotating radian with defocusing distance when pure phase modulation function is used.
Fig. 12
Fig. 12 Illustration of the design scheme of the 3D temperature measurement system① Micro-imaging system ② Quantum dot fluorescence temperature measurement system ③ Quantum-dot 3D positioning system.
Fig. 13
Fig. 13 Illustration of the measurement process of the grating spectrometer.
Fig. 14
Fig. 14 Prepared quantum dot in the present experiment.
Fig. 15
Fig. 15 Relation between the quantum dot fluorescence spectra and temperature. (a) Fluorescence spectra of the prepared quantum dot at different temperatures. (b) Relationship between the fluorescence peak wavelength and temperature.
Fig. 16
Fig. 16 Picture of the quantum dot temperature probe and the installation of the heating sheet ① Quantum dot temperature probe ② the fixed support of movable object slide ③ heating sheet of the temperature controller.
Fig. 17
Fig. 17 Image of the quantum dots after processing. (a) In high-concentration region and (b) In low-concentration region.
Fig. 18
Fig. 18 Temperature variations of the quantum dot temperature probes in heating process.

Tables (5)

Tables Icon

Table 1 Chemical reagents and materials used in the preparation of PDDA-CdTe quantum dot composite film

Tables Icon

Table 2 Linearity between the peak wavelength of the fluorescence spectrum of the prepared quantum dot film and temperature in each process

Tables Icon

Table 3 Linear relationship between the fluorescence intensity of the prepared quantum dot film and temperature in each process

Tables Icon

Table 4 Linear relationship between the half-peak width of the fluorescence spectrum of the prepared quantum dot film and temperature in each process

Tables Icon

Table 5 Spatial positions of the quantum dots

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E g ( T ) = E g ( 0 ) α T 2 β + T
h c λ = E g Q D
d λ d T = λ 2 1239.84 d E g Q D d T
k nrt ~ e ( Δ E / k T )
Q Y = Γ / ( Γ + k nrt )
I = I 0 ϕ k ε d c
Γ ( T ) = Γ i n h + γ A C T + Γ L O ( e E L O / K B T 1 ) 1
h ( x o , y o , x i , y i ) = j = 1 Q c j u m j n j ( r , θ , 0 )
δ ( x o , y o ) h ( x o , y o , x i , y i ) exp [ i π x i 2 + y i 2 λ Δ z ]
θ = 2.14802 × ( 0.00023277 + tan 1 ( Δ d 9598.06 ) )
Δ T = Δ λ S w a v e
λ = 0.17 T + 539.60

Metrics