Abstract

Optical nanoscopy techniques can image intracellular structures with high specificity at sub-diffraction limited resolution, bridging the resolution gap between optical microscopy and electron microscopy. So far conventional nanoscopy lacks the ability to generate high throughput data, as the imaged region is small. Photonic chip-based nanoscopy has demonstrated the potential for imaging large areas, but at a lateral resolution of 130 nm. However, all the existing super-resolution methods provide a resolution of 100 nm or better. In this work, chip-based nanoscopy is demonstrated with a resolution of 75 nm over an extraordinarily large area of 0.5 mm × 0.5 mm, using a low magnification and high N.A. objective lens. Furthermore, the performance of chip-based nanoscopy is benchmarked by studying the localization precision and illumination homogeneity for different waveguide widths. The advent of large field-of-view chip-based nanoscopy opens up new routes in diagnostics where high throughput is needed for the detection of non-diffuse disease, or rare events such as the early detection of cancer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-modal chip-based fluorescence and quantitative phase microscopy for studying inflammation in macrophages

Vishesh Dubey, Azeem Ahmad, Rajwinder Singh, Deanna L Wolfson, Purusotam Basnet, Ganesh Acharya, Dalip Singh Mehta, and Balpreet Singh Ahluwalia
Opt. Express 26(16) 19864-19876 (2018)

Silicon nitride waveguide platform for fluorescence microscopy of living cells

Jean-Claude Tinguely, Øystein Ivar Helle, and Balpreet Singh Ahluwalia
Opt. Express 25(22) 27678-27690 (2017)

Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy

Lin Wang, Cvetelin Vasilev, Daniel P. Canniffe, Luke R. Wilson, C. Neil Hunter, and Ashley J. Cadby
Opt. Express 20(3) 3311-3324 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), pp. 156–160.
  2. S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
    [Crossref] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  4. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
    [Crossref]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  6. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  8. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
    [Crossref]
  9. I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
    [Crossref]
  10. K. Agarwal and R. Macháň, “Multiple signal classification algorithm for super-resolution fluorescence microscopy,” Nat. Commun. 7, 13752 (2016).
    [Crossref] [PubMed]
  11. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  12. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
    [Crossref]
  13. J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24, 28080–28090 (2016).
    [Crossref]
  14. A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
    [Crossref]
  15. R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
    [Crossref]
  16. J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
    [Crossref]
  17. M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
    [Crossref]
  18. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
    [Crossref]
  19. B. Smedsrød and H. Pertoft, “Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of percoll centrifugation and selective adherence,” J. Leukoc. Biol. 38, 213–230 (1985).
    [Crossref]
  20. N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
    [Crossref]
  21. Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
    [Crossref]
  22. P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25, 12926–12934 (2017).
    [Crossref]
  23. Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23, 6601–6612 (2015).
    [Crossref]
  24. F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15, 3918–3924 (2015).
    [Crossref]
  25. F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-a cladded mach-zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
    [Crossref]
  26. A. Orth and K. Crozier, “Gigapixel fluorescence microscopy with a water immersion microlens array,” Opt. Express 21, 2361–2368 (2013).
    [Crossref]
  27. J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
    [Crossref]
  28. F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

2017 (6)

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
[Crossref]

P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25, 12926–12934 (2017).
[Crossref]

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

2016 (2)

K. Agarwal and R. Macháň, “Multiple signal classification algorithm for super-resolution fluorescence microscopy,” Nat. Commun. 7, 13752 (2016).
[Crossref] [PubMed]

J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24, 28080–28090 (2016).
[Crossref]

2015 (5)

I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
[Crossref]

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23, 6601–6612 (2015).
[Crossref]

F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15, 3918–3924 (2015).
[Crossref]

F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-a cladded mach-zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
[Crossref]

2014 (1)

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

2013 (2)

A. Orth and K. Crozier, “Gigapixel fluorescence microscopy with a water immersion microlens array,” Opt. Express 21, 2361–2368 (2013).
[Crossref]

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
[Crossref]

2012 (1)

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

2011 (1)

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

2009 (1)

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

2008 (1)

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

2006 (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1994 (1)

1985 (1)

B. Smedsrød and H. Pertoft, “Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of percoll centrifugation and selective adherence,” J. Leukoc. Biol. 38, 213–230 (1985).
[Crossref]

Agarwal, K.

K. Agarwal and R. Macháň, “Multiple signal classification algorithm for super-resolution fluorescence microscopy,” Nat. Commun. 7, 13752 (2016).
[Crossref] [PubMed]

Ahluwalia, B. S.

Baets, R.

Banterle, N.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Beck, M.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
[Crossref]

Becker, S.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Beghin, A.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bewersdorf, J.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Boening, D.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Borkovec, J.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

Bui, K. H.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
[Crossref]

Butler, C.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Cabillic, M.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Choquet, D.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Colyer, R.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

Crozier, K.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Dertinger, T.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

Deschamps, J.

Diekmann, R.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

Duim, W. C.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Dullo, F. T.

Elnatan, D.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Enderlein, J.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

Engqvist, M.

Flottmann, B.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Galland, R.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Giannone, G.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Giller, K.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), pp. 156–160.

Griesinger, C.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Hagen, G. M.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

Hansen, J. H.

Heidbreder, M.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

Heilemann, M.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Hell, S. W.

Helle, Ø. I.

Hellesø, O. G.

Hennig, S.

I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
[Crossref]

Hernandez, S. Y.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Herrmannsdörfer, F.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Horstmann, H.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Huang, B.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Huang, F.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Huser, T.

I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
[Crossref]

Huser, T. R.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

Iyer, G.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

Jágerská, J.

Jiao, J.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Jungmann, R.

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

Kasper, R.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Kechkar, A.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Kirschbaum, S.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Klein, T.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

Krížek, P.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

Kuner, T.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Lemke, E. A.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
[Crossref]

Levet, F.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Lin, Y.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Lindecrantz, S.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Long, J. J.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Löschberger, A.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

Machán, R.

K. Agarwal and R. Macháň, “Multiple signal classification algorithm for super-resolution fluorescence microscopy,” Nat. Commun. 7, 13752 (2016).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

McCourt, P.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

Moonan, D. W.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Mukherjee, A.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Müller, M.

I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
[Crossref]

Nanguneri, S.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Øie, C. I.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Orth, A.

Ovesný, M.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Pertoft, H.

B. Smedsrød and H. Pertoft, “Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of percoll centrifugation and selective adherence,” J. Leukoc. Biol. 38, 213–230 (1985).
[Crossref]

Rebane, A. A.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Ries, J.

Rossier, O.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Rowald, A.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Sandoghdar, V.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Sauer, M.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Schlichthaerle, T.

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

Schnitzbauer, J.

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

Schomburg, B.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Schroeder, L. K.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Schueder, F.

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

Schüttpelz, M.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Seefeldt, B.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Sibarita, J.-B.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

Skirtach, A. G.

Smedsrød, B.

B. Smedsrød and H. Pertoft, “Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of percoll centrifugation and selective adherence,” J. Leukoc. Biol. 38, 213–230 (1985).
[Crossref]

Solbø, S. A.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Strauss, M. T.

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

Švindrych, Z.

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

Tinguely, J.-C.

Tinnefeld, P.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

van de Linde, S.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Velasco, M. G. M.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Venkataramani, V.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Virrueta, A.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Weisenburger, S.

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Weiss, S.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

Wichmann, J.

Wolter, S.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

Wuytens, P. C.

Yahiatene, I.

I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
[Crossref]

Zhang, W.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Zhang, Y.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Zhu, L.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[Crossref]

ACS Photonics (1)

I. Yahiatene, S. Hennig, M. Müller, and T. Huser, “Entropy-based super-resolution imaging (esi): From disorder to fine detail,” ACS Photonics 2, 1049–1056 (2015).
[Crossref]

Angew. Chem. Int. (1)

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. 47, 6172–6176 (2008).
[Crossref]

Bioinformatics (1)

M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30, 2389–2390 (2014).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

J. Leukoc. Biol. (1)

B. Smedsrød and H. Pertoft, “Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of percoll centrifugation and selective adherence,” J. Leukoc. Biol. 38, 213–230 (1985).
[Crossref]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

J. Struct. Biol. (1)

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183, 363–367 (2013).
[Crossref]

Lab Chip (1)

F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15, 3918–3924 (2015).
[Crossref]

Nat. Commun. (1)

K. Agarwal and R. Macháň, “Multiple signal classification algorithm for super-resolution fluorescence microscopy,” Nat. Commun. 7, 13752 (2016).
[Crossref] [PubMed]

Nat. Methods (4)

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,” Nat. Methods 9, 721–723 (2012).
[Crossref]

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J.-B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14, 1184–1190 (2017).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006).
[Crossref]

S. Weisenburger, D. Boening, B. Schomburg, K. Giller, S. Becker, C. Griesinger, and V. Sandoghdar, “Cryogenic optical localization provides 3d protein structure data with angstrom resolution,” Nat. Methods 14, 141–144 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322–328 (2017).
[Crossref]

Nat. Protoc. (2)

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991–1009 (2011).
[Crossref]

J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, and R. Jungmann, “Super-resolution microscopy with dna-paint,” Nat. Protoc. 12, 1198–1228 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

PloS one (1)

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PloS one 10, e0128135 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A (1)

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3d super-resolution optical fluctuation imaging (sofi),” Proc. Natl. Acad. Sci. U.S.A 106, 22287–22292 (2009).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Other (2)

J. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), pp. 156–160.

F. Herrmannsdörfer, B. Flottmann, S. Nanguneri, V. Venkataramani, H. Horstmann, T. Kuner, and M. Heilemann, 3D dSTORM Imaging of Fixed Brain Tissue (SpringerNew York, 2017), pp. 169–184.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Laser light is coupled into a PIC via an objective lens, and light is guided towards the specimen in optical waveguides. On top of the chip there is a PDMS microchamber to contain the image buffer. b) In the center of the chip there is an opening in the protective cladding where the specimen is mounted to come in contact with the evanescent field. The fluorescent signal is captured by an upright microscope. c) The PIC has lateral dimension of around 3 cm × 3 cm. A layer of SiO2 give a strong refractive index contrast against the Si3N4 waveguide. In between the guiding material are layers of Poly-Silicon that blocks light from passing in to neighboring waveguides.
Fig. 2
Fig. 2 Localizations as function on power and width – The average number of localizations over a fixed area for different waveguide widths and input powers. We see that for waveguides 200 – 400 μm wide around 25 mW at the input of the waveguide is enough to get optimum blinking, while for 600 μm waveguide we must increase the power to 100mW.
Fig. 3
Fig. 3 Modulation depth as function of waveguide width – a) Illumination MMI pattern without mode averaging. b) After mode averaging the resulting illumination is more close to uniform. c) The modulation depth is plotted for different waveguide widths, and only small changes is observed when the width increases. d) The line-profile indicated in b). When calculating the modulation depth the edge artifacts are ignored.
Fig. 4
Fig. 4 a) Large field of view dSTORM image of Alexa 647 stained tubulin in rat LSECs. The image has a resolution of around 70–75 nm with 200–300 cells being imaged simultaneously. b) Zoomed image from a) with comparison to the diffraction limited image. c) Zoomed image marked in green from a) with the position of the lineplot shown in d) marked. d) The lineplot show tubulin filaments clearly separated by a distance of 78 nm. e) Fourier ring correlation indicated a resolution of around 72nm. f) The localization precision measured by the reconstruction software further backs a resolution between 70–75 nm.
Fig. 5
Fig. 5 Localizations from Fig. 4 as function of width across the field of view. Each data point includes all localizations within a bin width of 10μm horizontally separated. We see that the number of properly localized molecules decrease moving away from the center of the objective lens.

Metrics