Abstract

In this paper, a two-path parallel scheme for m-QAM-OFDM transmission in optical wireless communications was proposed, and its principle was theoretically derived. This scheme transmitted two-path parallel OFDM signals, which carried m-QAM mapped data symbols and their conjugated data symbols respectively. Simple superimposition at the receiver was performed to mitigate the inter-carrier interference (ICI). The feasibility of the scheme was experimentally demonstrated over a turbulent-air-water channel. The results show that the proposed scheme was not sensitive to time delay between the two paths, and it brought significant improvement of bit error rates (BER) performance compared to conventional single-path m-QAM-OFDM transmission scheme even in the turbulent-air-water channel. The proposed scheme has great potential in free space optical (FSO) communications, visible light communications (VLC) and underwater optical wireless communications (UOWC).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance of 16 QAM-OFDM With New Null Subcarrier Shifting in an Intensity-Modulated Direct Detection System

Hongxian Chen, Jing He, Jin Tang, Fan Li, Ming Chen, and Lin Chen
J. Opt. Commun. Netw. 6(2) 159-164 (2014)

Reducing the Peak-to-Average Power Ratio With Companding Transform Coding in 60 GHz OFDM-ROF Systems

Fan Li, Jianjun Yu, Zizheng Cao, Jiangnan Xiao, Hongxian Chen, and Lin Chen
J. Opt. Commun. Netw. 4(3) 202-209 (2012)

26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode

Yifei Chen, Meiwei Kong, Tariq Ali, Jiongliang Wang, Rohail Sarwar, Jun Han, Chaoyang Guo, Bing Sun, Ning Deng, and Jing Xu
Opt. Express 25(13) 14760-14765 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C.-J. Chen, J.-H. Yan, D.-H. Chen, K.-H. Lin, K.-M. Feng, and M.-C. Wu, “A 520-nm Green GaN LED with High Bandwidth and Low Current Density for Gigabits OFDM Data Communication,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper Th2A.18.
    [Crossref]
  2. B. Schrenk and C. Pacher, “1 Gb/s All-LED Visible Light Communication System,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M1F.4.
    [Crossref]
  3. G. Zhang, J. Zhang, X. Hong, and S. He, “Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes,” Opt. Express 25(4), 3780–3794 (2017).
    [Crossref] [PubMed]
  4. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  5. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  6. C. Fei, J. Zhang, G. Zhang, Y. Wu, X. Hong, and S. He, “Demonstration of 15-M 7.33-Gb/s 450-nmUnderwater Wireless Optical Discrete Multitone Transmission Using Post Nonlinear Equalization,” J. Lightwave Technol. 36(3), 728–734 (2018).
    [Crossref]
  7. M. N. Raed, H. Elgala, and T. D. C. Little, “A Novel Method to Mitigate LED Nonlinearity Distortions in Optical Wireless OFDM Systems,” in Optical Fiber Communication Conference (Anaheim, California, 2013), paper JW2A.69.
  8. C. Chen, W.-D. Zhong, and D. Wu, “Indoor OFDM Visible Light Communications Employing Adaptive Digital Pre-Frequency Domain Equalization,” in Conference on Lasers and Electro-Optics (San Jose, California, 2016), paper JTh2A.118.
    [Crossref]
  9. X. Lu, M. Zhao, L. Qiao, and N. Chi, “Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M2K.1.
    [Crossref]
  10. Y. Zhou, S. Liang, S. Chen, X. Huang, and N. Chi, “2.08Gbit/s Visible Light Communication Utilizing Power Exponential Pre-equalization,” in 25th Wireless and Optical Communication Conference (WOCC, 2016).
  11. C. Li, Z. Xu, C. Yang, Q. Yang, and S. Yu, “Experimental Demonstration of Clipping Noise Mitigation for OFDM-Based Underwater Optical Wireless Communications,” in Asia communications and photonics conference (Guangzhou, China, 2017), paper M1G.2.
  12. A. J. Lowery, “Enhanced Asymmetrically Clipped Optical ODFM for High Spectral Efficiency and Sensitivity,” in Optical Fiber Communication Conference (Anaheim, California, 2016), paper Th2A.30.
    [Crossref]
  13. Y. Hei, J. Liu, H. Gu, W. Li, X. Xu, and R. T. Chen, “Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications,” Opt. Express 25(20), 24448–24458 (2017).
    [Crossref] [PubMed]
  14. J. Bai, Y. Li, Y. Yi, W. Cheng, and H. Du, “PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications,” Opt. Express 25(20), 24630–24638 (2017).
    [Crossref] [PubMed]
  15. S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
    [Crossref]
  16. J. Wang, Y. Xu, X. Ling, R. Zhang, Z. Ding, and C. Zhao, “PAPR analysis for OFDM visible light communication,” Opt. Express 24(24), 27457–27474 (2016).
    [Crossref] [PubMed]
  17. J. Zhang, X. Chen, D. Zeng, H. Yang, X. Yi, and K. Qiu, “ICI cancellation using symmetric subcarrier pairs with opposite weightings in CO-OFDM systems,” in Asia communications and photonics conference (Shanghai, China, 2014), paper ATh3A.121.
    [Crossref]
  18. X. Yi, B. Xu, J. Zhang, Y. Lin, and K. Qiu, “Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise,” Opt. Express 22(25), 31192–31199 (2014).
    [Crossref] [PubMed]
  19. X. Yi, X. Chen, D. Sharma, C. Li, M. Luo, Q. Yang, Z. Li, and K. Qiu, “Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation,” Opt. Express 22(11), 13454–13459 (2014).
    [Crossref] [PubMed]
  20. X. Hong, X. Hong, J. Zhang, and S. He, “Low-complexity linewidth-tolerant time domain sub-symbol optical phase noise suppression in CO-OFDM systems,” Opt. Express 24(5), 4856–4871 (2016).
    [Crossref] [PubMed]
  21. W.-R. Peng, “Analysis of Laser Phase Noise Effect in Direct-Detection Optical OFDM Transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
    [Crossref]
  22. W.-R. Peng, J. Chen, and S. Chi, “On the Phase Noise Impact in Direct-Detection Optical OFDM Transmission,” IEEE Photonics Technol. Lett. 22(9), 649–651 (2010).
    [Crossref]
  23. L. Zhang, Y. Ming, and J. Li, “Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots,” Opt. Commun. 403, 197–204 (2017).
    [Crossref]
  24. W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” in European Conference on Optical Communication (Torino, Italy, 2010), paper Tu.3.C.3.
    [Crossref]
  25. M.R.H. Mondal and J. Armstrong, “Analysis of the effect of vignetting on MIMO optical wireless systems using spatial OFDM,”, J. Lightwave Technol. 32(5), 922–929 (2014).
    [Crossref]
  26. L. Zhang, H. Wang, and X. Shao, “Improved m-QAM-OFDM transmission for underwater wireless optical communications,” Opt. Commun. 423, 180–185 (2018).
    [Crossref]
  27. J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in Proceedings of IEEE Military Communications Conference (IEEE, 2005), 1700–1705.
    [Crossref]
  28. E. J. Lee and V. W. S. Chan, “Part 1: Optical Communication Over the Clear Turbulent Atmospheric Channel Using Diversity,” IEEE J. Sel. Areas Comm. 22(9), 1896–1906 (2004).
    [Crossref]
  29. N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized Maximum-Likelihood Sequence Detection for Photon-Counting Free Space Optical Systems,” IEEE Trans. Commun. 58(12), 3381–3385 (2010).
    [Crossref]

2018 (2)

2017 (5)

2016 (2)

2015 (1)

2014 (3)

2010 (3)

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized Maximum-Likelihood Sequence Detection for Photon-Counting Free Space Optical Systems,” IEEE Trans. Commun. 58(12), 3381–3385 (2010).
[Crossref]

W.-R. Peng, “Analysis of Laser Phase Noise Effect in Direct-Detection Optical OFDM Transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
[Crossref]

W.-R. Peng, J. Chen, and S. Chi, “On the Phase Noise Impact in Direct-Detection Optical OFDM Transmission,” IEEE Photonics Technol. Lett. 22(9), 649–651 (2010).
[Crossref]

2004 (1)

E. J. Lee and V. W. S. Chan, “Part 1: Optical Communication Over the Clear Turbulent Atmospheric Channel Using Diversity,” IEEE J. Sel. Areas Comm. 22(9), 1896–1906 (2004).
[Crossref]

Ali, T.

Alouini, M. S.

Armstrong, J.

Bai, J.

Bankman, I. N.

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in Proceedings of IEEE Military Communications Conference (IEEE, 2005), 1700–1705.
[Crossref]

Chan, V. W. S.

E. J. Lee and V. W. S. Chan, “Part 1: Optical Communication Over the Clear Turbulent Atmospheric Channel Using Diversity,” IEEE J. Sel. Areas Comm. 22(9), 1896–1906 (2004).
[Crossref]

Chatzidiamantis, N. D.

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized Maximum-Likelihood Sequence Detection for Photon-Counting Free Space Optical Systems,” IEEE Trans. Commun. 58(12), 3381–3385 (2010).
[Crossref]

Chen, J.

W.-R. Peng, J. Chen, and S. Chi, “On the Phase Noise Impact in Direct-Detection Optical OFDM Transmission,” IEEE Photonics Technol. Lett. 22(9), 649–651 (2010).
[Crossref]

Chen, L.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

Chen, M.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

Chen, Q.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

Chen, R. T.

Chen, X.

Chen, Y.

Cheng, W.

Chi, N.

X. Lu, M. Zhao, L. Qiao, and N. Chi, “Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M2K.1.
[Crossref]

Chi, S.

W.-R. Peng, J. Chen, and S. Chi, “On the Phase Noise Impact in Direct-Detection Optical OFDM Transmission,” IEEE Photonics Technol. Lett. 22(9), 649–651 (2010).
[Crossref]

Chi, Y.-C.

Deng, N.

Deng, R.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

Ding, Z.

Dong, S.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

Du, H.

Duran, J. R.

Fei, C.

Giles, J. W.

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in Proceedings of IEEE Military Communications Conference (IEEE, 2005), 1700–1705.
[Crossref]

Gu, H.

Guo, C.

Han, J.

He, J.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

He, J. H.

He, S.

Hei, Y.

Hong, X.

Janjua, B.

Karagiannidis, G. K.

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized Maximum-Likelihood Sequence Detection for Photon-Counting Free Space Optical Systems,” IEEE Trans. Commun. 58(12), 3381–3385 (2010).
[Crossref]

Kong, M.

Kuo, H. C.

Lee, E. J.

E. J. Lee and V. W. S. Chan, “Part 1: Optical Communication Over the Clear Turbulent Atmospheric Channel Using Diversity,” IEEE J. Sel. Areas Comm. 22(9), 1896–1906 (2004).
[Crossref]

Li, C.

Li, J.

L. Zhang, Y. Ming, and J. Li, “Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots,” Opt. Commun. 403, 197–204 (2017).
[Crossref]

Li, W.

Li, Y.

Li, Z.

Lin, G. R.

Lin, Y.

Ling, X.

Liu, J.

Lu, X.

X. Lu, M. Zhao, L. Qiao, and N. Chi, “Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M2K.1.
[Crossref]

Luo, M.

Ma, J.

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

Ming, Y.

L. Zhang, Y. Ming, and J. Li, “Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots,” Opt. Commun. 403, 197–204 (2017).
[Crossref]

Mondal, M.R.H.

Morita, I.

W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” in European Conference on Optical Communication (Torino, Italy, 2010), paper Tu.3.C.3.
[Crossref]

Ng, T. K.

Ooi, B. S.

Oubei, H. M.

Pacher, C.

B. Schrenk and C. Pacher, “1 Gb/s All-LED Visible Light Communication System,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M1F.4.
[Crossref]

Peng, W.-R.

W.-R. Peng, J. Chen, and S. Chi, “On the Phase Noise Impact in Direct-Detection Optical OFDM Transmission,” IEEE Photonics Technol. Lett. 22(9), 649–651 (2010).
[Crossref]

W.-R. Peng, “Analysis of Laser Phase Noise Effect in Direct-Detection Optical OFDM Transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
[Crossref]

W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” in European Conference on Optical Communication (Torino, Italy, 2010), paper Tu.3.C.3.
[Crossref]

Qiao, L.

X. Lu, M. Zhao, L. Qiao, and N. Chi, “Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M2K.1.
[Crossref]

Qiu, K.

Sarwar, R.

Schrenk, B.

B. Schrenk and C. Pacher, “1 Gb/s All-LED Visible Light Communication System,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M1F.4.
[Crossref]

Shao, X.

L. Zhang, H. Wang, and X. Shao, “Improved m-QAM-OFDM transmission for underwater wireless optical communications,” Opt. Commun. 423, 180–185 (2018).
[Crossref]

Sharma, D.

Sun, B.

Tanaka, H.

W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” in European Conference on Optical Communication (Torino, Italy, 2010), paper Tu.3.C.3.
[Crossref]

Tsai, C.-T.

Uysal, M.

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized Maximum-Likelihood Sequence Detection for Photon-Counting Free Space Optical Systems,” IEEE Trans. Commun. 58(12), 3381–3385 (2010).
[Crossref]

Wang, H.

L. Zhang, H. Wang, and X. Shao, “Improved m-QAM-OFDM transmission for underwater wireless optical communications,” Opt. Commun. 423, 180–185 (2018).
[Crossref]

Wang, H.-Y.

Wang, J.

Wu, Y.

Xu, B.

Xu, J.

Xu, X.

Xu, Y.

Yang, Q.

Yi, X.

Yi, Y.

Zhang, G.

Zhang, J.

Zhang, L.

L. Zhang, H. Wang, and X. Shao, “Improved m-QAM-OFDM transmission for underwater wireless optical communications,” Opt. Commun. 423, 180–185 (2018).
[Crossref]

L. Zhang, Y. Ming, and J. Li, “Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots,” Opt. Commun. 403, 197–204 (2017).
[Crossref]

Zhang, R.

Zhao, C.

Zhao, M.

X. Lu, M. Zhao, L. Qiao, and N. Chi, “Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M2K.1.
[Crossref]

IEEE J. Sel. Areas Comm. (1)

E. J. Lee and V. W. S. Chan, “Part 1: Optical Communication Over the Clear Turbulent Atmospheric Channel Using Diversity,” IEEE J. Sel. Areas Comm. 22(9), 1896–1906 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W.-R. Peng, J. Chen, and S. Chi, “On the Phase Noise Impact in Direct-Detection Optical OFDM Transmission,” IEEE Photonics Technol. Lett. 22(9), 649–651 (2010).
[Crossref]

IEEE Trans. Commun. (1)

N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized Maximum-Likelihood Sequence Detection for Photon-Counting Free Space Optical Systems,” IEEE Trans. Commun. 58(12), 3381–3385 (2010).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (2)

L. Zhang, Y. Ming, and J. Li, “Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots,” Opt. Commun. 403, 197–204 (2017).
[Crossref]

L. Zhang, H. Wang, and X. Shao, “Improved m-QAM-OFDM transmission for underwater wireless optical communications,” Opt. Commun. 423, 180–185 (2018).
[Crossref]

Opt. Express (9)

X. Yi, B. Xu, J. Zhang, Y. Lin, and K. Qiu, “Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise,” Opt. Express 22(25), 31192–31199 (2014).
[Crossref] [PubMed]

X. Yi, X. Chen, D. Sharma, C. Li, M. Luo, Q. Yang, Z. Li, and K. Qiu, “Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation,” Opt. Express 22(11), 13454–13459 (2014).
[Crossref] [PubMed]

X. Hong, X. Hong, J. Zhang, and S. He, “Low-complexity linewidth-tolerant time domain sub-symbol optical phase noise suppression in CO-OFDM systems,” Opt. Express 24(5), 4856–4871 (2016).
[Crossref] [PubMed]

Y. Hei, J. Liu, H. Gu, W. Li, X. Xu, and R. T. Chen, “Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications,” Opt. Express 25(20), 24448–24458 (2017).
[Crossref] [PubMed]

J. Bai, Y. Li, Y. Yi, W. Cheng, and H. Du, “PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications,” Opt. Express 25(20), 24630–24638 (2017).
[Crossref] [PubMed]

J. Wang, Y. Xu, X. Ling, R. Zhang, Z. Ding, and C. Zhao, “PAPR analysis for OFDM visible light communication,” Opt. Express 24(24), 27457–27474 (2016).
[Crossref] [PubMed]

G. Zhang, J. Zhang, X. Hong, and S. He, “Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes,” Opt. Express 25(4), 3780–3794 (2017).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

Other (12)

C.-J. Chen, J.-H. Yan, D.-H. Chen, K.-H. Lin, K.-M. Feng, and M.-C. Wu, “A 520-nm Green GaN LED with High Bandwidth and Low Current Density for Gigabits OFDM Data Communication,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper Th2A.18.
[Crossref]

B. Schrenk and C. Pacher, “1 Gb/s All-LED Visible Light Communication System,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M1F.4.
[Crossref]

M. N. Raed, H. Elgala, and T. D. C. Little, “A Novel Method to Mitigate LED Nonlinearity Distortions in Optical Wireless OFDM Systems,” in Optical Fiber Communication Conference (Anaheim, California, 2013), paper JW2A.69.

C. Chen, W.-D. Zhong, and D. Wu, “Indoor OFDM Visible Light Communications Employing Adaptive Digital Pre-Frequency Domain Equalization,” in Conference on Lasers and Electro-Optics (San Jose, California, 2016), paper JTh2A.118.
[Crossref]

X. Lu, M. Zhao, L. Qiao, and N. Chi, “Non-linear Compensation of Multi-CAP VLC System Employing Pre-Distortion Base on Clustering of Machine Learning,” in Optical Fiber Communication Conference (San Diego, California, 2018), paper M2K.1.
[Crossref]

Y. Zhou, S. Liang, S. Chen, X. Huang, and N. Chi, “2.08Gbit/s Visible Light Communication Utilizing Power Exponential Pre-equalization,” in 25th Wireless and Optical Communication Conference (WOCC, 2016).

C. Li, Z. Xu, C. Yang, Q. Yang, and S. Yu, “Experimental Demonstration of Clipping Noise Mitigation for OFDM-Based Underwater Optical Wireless Communications,” in Asia communications and photonics conference (Guangzhou, China, 2017), paper M1G.2.

A. J. Lowery, “Enhanced Asymmetrically Clipped Optical ODFM for High Spectral Efficiency and Sensitivity,” in Optical Fiber Communication Conference (Anaheim, California, 2016), paper Th2A.30.
[Crossref]

J. Zhang, X. Chen, D. Zeng, H. Yang, X. Yi, and K. Qiu, “ICI cancellation using symmetric subcarrier pairs with opposite weightings in CO-OFDM systems,” in Asia communications and photonics conference (Shanghai, China, 2014), paper ATh3A.121.
[Crossref]

S. Dong, J. He, M. Chen, Q. Chen, R. Deng, J. Ma, and L. Chen, “Performance improvement of ACO-OFDM system using OCT precoding combined with digital peak-clipping,” in Conference on Lasers and Electro-Optics (San Jose, California, 2018), paper Th3I. 1.
[Crossref]

W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” in European Conference on Optical Communication (Torino, Italy, 2010), paper Tu.3.C.3.
[Crossref]

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in Proceedings of IEEE Military Communications Conference (IEEE, 2005), 1700–1705.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 The proposed architecture of baseband OFDM (a) transmitter and (b) receiver.
Fig. 2
Fig. 2 Experimental setup of m-QAM-OFDM transmission over a turbulent-air-water channel based on the proposed scheme. Laser diode (LD), mirror (M1, M2), avalanche photodiode (APD).
Fig. 3
Fig. 3 Photo of the experimental setup (a) devices and equipments used at the transmitter end (b) green-light and blue light in transmission and devices used at the receiver end (c) atmospheric turbulence simulator with heater and fans and water tank filled with tap-water.
Fig. 4
Fig. 4 (a) Optical spectra and (b) optical power versus bias current of blue-light LD and green-light LD.
Fig. 5
Fig. 5 The captured waveform when two-path OFDM signals were transmitted synchronously.
Fig. 6
Fig. 6 The corresponding frequency spectra of the captured waveform in Fig. 5.
Fig. 7
Fig. 7 Curves of BER versus transmission distance over a non-turbulent-air-water channel when two-path OFDM signals were transmitted synchronously.
Fig. 8
Fig. 8 The captured waveform when two-path OFDM signals were transmitted asynchronously.
Fig. 9
Fig. 9 Curves of BER versus transmission distance over a non-turbulent-air-water channel when two-path OFDM signals were transmitted asynchronously.
Fig. 10
Fig. 10 (a) The fluctuated signal captured at the receiver end when the constant optical power from blue-light LD propagated through the turbulent-air-water channel. (b) histogram of the signal in (a) and the fitted curve of the histogram. (c) power spectra density of the signal in (a).
Fig. 11
Fig. 11 (a) The fluctuated signal captured at the receiver end when the constant optical power from green-light LD propagated through the turbulent-air-water channel. (b) histogram of the signal in (a) and the fitted curve of the histogram. (c) power spectra density of the signal in (a).
Fig. 12
Fig. 12 Curves of BER versus transmission distance over a turbulent-air-water channel when two-path OFDM signals were transmitted synchronously.
Fig. 13
Fig. 13 Curves of BER versus transmission distance over a turbulent-air-water channel when two-path OFDM signals were transmitted asynchronously.
Fig. 14
Fig. 14 Recovered constellations of 16-QAM and 64-QAM for conventional single-path OFDM signals ((a), (b)) and the proposed two-path scheme ((c), (d)) when the length of water channel was 8-m and atmospheric turbulence simulator was enabled.
Fig. 15
Fig. 15 Comparison of BER performance over a turbulent-air-water channel when two paths of conventional OFDM signals with 8-QAM constellation were transmitted synchronously.

Tables (1)

Tables Icon

Table 1 Parameters of OFDM

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

x k = n=0 N1 d n e j 2π N nk ,k=0,1,2,...,N1,
r k = x k e j ϕ k + w k ,
d ^ n = 1 N k=0 N1 r k e j 2π N nk ,n=0,1,2,...,N1.,
d ^ n = 1 N k=0 N1 ( x k e j ϕ k ) e j 2π N nk = 1 N k=0 N1 ( m=0 N1 d m e j 2π N mk ) e j ϕ k e j 2π N nk = 1 N m=0 N1 k=0 N1 d m e j 2π N mk e j 2π N nk e j ϕ k = 1 N m=0 N1 k=0 N1 d m e j 2π N mk e j 2π N nk e j 2π N N 2πk ϕ k k , n=0,1,2,...,N1, = 1 N m=0 N1 k=0 N1 d m e j 2π N (mn+ N 2πk ϕ k )k = d n ( 1 N k=0 N1 e j ϕ k )+ 1 N m=0 mn N1 k=0 N1 d m e j 2π N (mn+ N 2πk ϕ k )k = d n ψ( 0 )+ψ( mn )
ψ( 0 )= 1 N k=0 N1 e j ϕ k ,
ψ( mn )= 1 N m=0 mn N1 k=0 N1 d m e j 2π N (mn+ N 2πk ϕ k )k
x k = n=0 N1 d n * e j 2π N nk ,k=0,1,2,...,N1,
r k = x k e j ϕ k + w k
d ^ n = 1 N k=0 N1 r k e j 2π N nk ,n=0,1,2,...,N1.
d ^ n = 1 N k=0 N1 ( x k e j ϕ k ) e j 2π N nk = 1 N k=0 N1 ( m=0 N1 d m * e j 2π N mk ) e j ϕ k e j 2π N nk = 1 N m=0 N1 k=0 N1 d m * e j 2π N mk e j 2π N nk e j ϕ k = 1 N m=0 N1 k=0 N1 d m * e j 2π N mk e j 2π N nk e j 2π N N 2πk ϕ k k , n=0,1,2,...,N1. = 1 N m=0 N1 k=0 N1 d m * e j 2π N (mn+ N 2πk ϕ k )k = d n * ( 1 N k=0 N1 e j ϕ k )+ 1 N m=0 mn N1 k=0 N1 d m * e j 2π N (mn+ N 2πk ϕ k )k
( d ^ n ) * = d n ( 1 N k=0 N1 e j ϕ k )+ 1 N m=0 mn N1 k=0 N1 d n e j 2π N (mn+ N 2πk ϕ k )k
d ˜ n = d ^ n + ( d ^ n ) * 2 , = d n { 1 N k=0 N1 ( e j ϕ k + e j ϕ k 2 ) }+ 1 N m=0 mn N1 k=0 N1 d m ( e j 2π N (mn+ N 2πk ϕ k )k + e j 2π N (mn+ N 2πk ϕ k )k 2 ) , = d n { 1 N k=0 N1 cos( ϕ k ) }+ m=0 mn N1 d m { 1 N k=0 N1 cos( 2π N (mn+ N 2πk ϕ k )k ) } = d n ψ ( 0 )+ ψ ( mn )
ψ ( 0 )= 1 N k=0 N1 cos( ϕ k ) ,
ψ ( mn )= m=0 mn N1 d m { 1 N k=0 N1 cos( 2π N (mn+ N 2πk ϕ k )k ) }

Metrics