Abstract

We fabricated waveguide resonators with high thermal stability using tantalum pentoxide thin film covered with PECVD silicon dioxide cladding. Without complex athermal design, low temperature dependence of 7.4 pm/°C and 8.15 pm/°C were measured in waveguide Bragg gratings (WBG) and Fabry-Perot resonator sandwiched by a pair of identical WBG mirrors, respectively. Suggested by semi-analytical perturbation calculations, the athermal properties of tantalum pentoxide waveguide grating are attributed not only to the low thermo-optical coefficient in tantalum pentoxide thin film but also to the strong chromatic dispersion of the guided modes. Guidelines are proposed to design waveguide-based frequency devices of low thermo-optical effect without complex athermal design.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tantalum pentoxide (Ta2O5) based athermal micro-ring resonator

Chung-Lun Wu, Yung-Jr Hung, RanRan Fan, Ding-Hsin Ou, Jen-Yang Huang, Tzu-Hsiang Yen, Yi-Jen Chiu, Min-Hsiung Shih, Yuan-Yao Lin, Ann-Kuo Chu, and Chao-Kuei Lee
OSA Continuum 2(4) 1198-1206 (2019)

Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour
Opt. Express 21(6) 6967-6972 (2013)

Tantalum pentoxide nanophotonic circuits for integrated quantum technology

Lukas Splitthoff, Martin A. Wolff, Thomas Grottke, and Carsten Schuck
Opt. Express 28(8) 11921-11932 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  2. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  3. Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
    [Crossref] [PubMed]
  4. W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
    [Crossref]
  5. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [Crossref] [PubMed]
  6. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]
  7. L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51(9), 1251–1256 (2012).
    [Crossref] [PubMed]
  8. K. Tada, Y. Nakano, and A. Ushirokawa, “Temperature compensated coupled cavity diode lasers,” Opt. Quantum Electron. 16(5), 463–469 (1984).
    [Crossref]
  9. Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Waveguides for Temperature-Independent Lightwave Devices,” IEEE Photonics Technol. Lett. 5(11), 1297–1300 (1993).
    [Crossref]
  10. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
    [Crossref]
  11. S. Namnabat, K.-J. Kim, A. Jones, R. Himmelhuber, C. T. DeRose, D. C. Trotter, A. L. Starbuck, A. Pomerene, A. L. Lentine, and R. A. Norwood, “Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material,” Opt. Express 25(18), 21471–21482 (2017).
    [Crossref] [PubMed]
  12. M. M. Milošević, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
    [Crossref] [PubMed]
  13. C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y. J. Hung, A. K. Chu, and C. K. Lee, “Low-loss and high-Q Ta(2)O(5) based micro-ring resonator with inverse taper structure,” Opt. Express 23(20), 26268–26275 (2015).
    [Crossref] [PubMed]
  14. A. K. Chu, H. C. Lin, and W. H. Cheng, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films,” J. Electron. Mater. 26(8), 889–892 (1997).
    [Crossref]
  15. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  16. K. A. Winick, “Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison,” Appl. Opt. 31(6), 757–764 (1992).
    [Crossref] [PubMed]
  17. D. Melati, P. G. Verly, A. Delâge, P. Cheben, J. H. Schmid, S. Janz, and D.-X. Xu, “Athermal echelle grating filter in silicon-on-insulator using a temperature-synchronized input,” Opt. Express 26(22), 28651–28660 (2018).
    [Crossref] [PubMed]
  18. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [Crossref]
  19. H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
    [Crossref]
  20. C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).
  21. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [Crossref] [PubMed]
  22. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
    [Crossref] [PubMed]

2018 (2)

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

D. Melati, P. G. Verly, A. Delâge, P. Cheben, J. H. Schmid, S. Janz, and D.-X. Xu, “Athermal echelle grating filter in silicon-on-insulator using a temperature-synchronized input,” Opt. Express 26(22), 28651–28660 (2018).
[Crossref] [PubMed]

2017 (1)

2016 (1)

2015 (2)

2014 (2)

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

2012 (2)

2011 (1)

2008 (1)

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

2006 (1)

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

2001 (1)

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

2000 (1)

C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

1997 (1)

A. K. Chu, H. C. Lin, and W. H. Cheng, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

1993 (1)

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Waveguides for Temperature-Independent Lightwave Devices,” IEEE Photonics Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

1992 (1)

1984 (1)

K. Tada, Y. Nakano, and A. Ushirokawa, “Temperature compensated coupled cavity diode lasers,” Opt. Quantum Electron. 16(5), 463–469 (1984).
[Crossref]

Adikaari, A. A. D. T.

Ahmed, Z.

André, R. M.

Andrés, M. V.

Baets, R.

Barmenkov, Y. O.

Bartelt, H.

Becker, M.

Berger, M.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Bogaerts, W.

Cheben, P.

Chen, B.-T.

Chen, X.

Chen, Z.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Cheng, W. H.

A. K. Chu, H. C. Lin, and W. H. Cheng, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

Chiu, Y.-J.

Chu, A. K.

Chuang, K.-P.

C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).

Cruz, J. L.

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Delâge, A.

Dellith, J.

DeRose, C. T.

Dumon, P.

Emerson, N. G.

Feng, Y.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Frazão, O.

Funato, N.

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Waveguides for Temperature-Independent Lightwave Devices,” IEEE Photonics Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

Gao, S.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Gardes, F. Y.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Han, X.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Himmelhuber, R.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Homma, T.

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Huang, B.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Huang, X.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Hung, Y. J.

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Inohara, K.

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Jaing, C.-C.

C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).

Janz, S.

Jian, X.

Jones, A.

Kim, K.-J.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Klimov, N. N.

Kokubun, Y.

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Waveguides for Temperature-Independent Lightwave Devices,” IEEE Photonics Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Kondo, H.

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Latifi, H.

Lee, C. K.

Lee, C.-C.

C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Leinders, S. M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Lentine, A. L.

Li, Z.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lin, G.-R.

Lin, H. C.

A. K. Chu, H. C. Lin, and W. H. Cheng, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

Lin, Y.-Y.

Liu, W.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Liu, Z.

Marques, M. B.

Mashanovich, G. Z.

Melati, D.

Michel, J.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Miloševic, M. M.

Mittal, S.

Morthier, G.

Muilwijk, P. M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Nakahata, J.

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Nakano, Y.

K. Tada, Y. Nakano, and A. Ushirokawa, “Temperature compensated coupled cavity diode lasers,” Opt. Quantum Electron. 16(5), 463–469 (1984).
[Crossref]

Namnabat, S.

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Norwood, R. A.

Pathak, S.

Pomerene, A.

Pozo, J.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Qin, B.

Rothhardt, M.

Schmid, J. H.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Selvaraja, S. K.

Starbuck, A. L.

Tada, K.

K. Tada, Y. Nakano, and A. Ushirokawa, “Temperature compensated coupled cavity diode lasers,” Opt. Quantum Electron. 16(5), 463–469 (1984).
[Crossref]

Takahashi, H.

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Takizawa, M.

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Waveguides for Temperature-Independent Lightwave Devices,” IEEE Photonics Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

Taniguchi, Y.

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Teng, J.

Tien, C.-L.

C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).

Tien, W.-C.

Torres-Peiró, S.

Trotter, D. C.

Urbach, H. P.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Ushirokawa, A.

K. Tada, Y. Nakano, and A. Ushirokawa, “Temperature compensated coupled cavity diode lasers,” Opt. Quantum Electron. 16(5), 463–469 (1984).
[Crossref]

van den Dool, T. C.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Verly, P. G.

Verweij, M. D.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Wan, L.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Wang, J.

Wang, L.

Warren-Smith, S. C.

Westerveld, W. J.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Winick, K. A.

Wu, C.-L.

Xiong, S.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Xu, D.-X.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yang, J.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Yousefi, M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

Yuan, L.

Zalvidea, D.

Zhang, H.

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Zhang, Y.

Zhao, M.

Zhou, A.

Zhu, Z.

Zibaii, M. I.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides,” IEEE J. Sel. Topics Quantum Electron. 20(4), 101–110 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Waveguides for Temperature-Independent Lightwave Devices,” IEEE Photonics Technol. Lett. 5(11), 1297–1300 (1993).
[Crossref]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal High-Index-Contrast Waveguide Design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

J. Electron. Mater. (1)

A. K. Chu, H. C. Lin, and W. H. Cheng, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

J. Mod. Opt. (1)

C.-L. Tien, C.-C. Lee, K.-P. Chuang, and C.-C. Jaing, “Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry,” J. Mod. Opt. 47, 1681–1691 (2000).

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

K. Tada, Y. Nakano, and A. Ushirokawa, “Temperature compensated coupled cavity diode lasers,” Opt. Quantum Electron. 16(5), 463–469 (1984).
[Crossref]

Opt. Rev. (1)

H. Kondo, K. Inohara, Y. Taniguchi, J. Nakahata, T. Homma, and H. Takahashi, “Thermo-optic switch using fluorinated silicon oxide and organic spin-on-glass films,” Opt. Rev. 8(5), 323–325 (2001).
[Crossref]

Sensors (Basel) (1)

Z. Chen, S. Xiong, S. Gao, H. Zhang, L. Wan, X. Huang, B. Huang, Y. Feng, W. Liu, and Z. Li, “High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip,” Sensors (Basel) 18(1), 202 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) plot the schematics of the fabricated WBG device and (b) illustrates the top view of SEM image after dry etching to show the waveguides and Bragg gratings in which the blow-ups are also presented in (d) and (e), respectively. SEM image (c) pictures the trapezoid cross section (850 base angle) of the fabricated waveguide.
Fig. 2
Fig. 2 (a) Intensity profile of transverse electrical (TE) polarized fundamental guided mode at a wavelength of 1533.5 nm in the trapezoidal waveguide with 850 base angle. The calculated (b) effective index and (c) group index of the TE polarized fundamental guided mode as a function of wavelength.
Fig. 3
Fig. 3 (a) Illustration of the WBG structure with periodic effective indices following periodic propagation constant β 1 and β 2 , respectively. (b) plots the effective index of the guided waves 400 nm thick core cladded with PECVD SiO2 (solid line in blue); 370 nm thick core cladded with PECVD SiO2 (dashed line in blue); 400 nm thick core cladded with SOG (solid line red); 370 nm thick core cladded with SOG (dashed line in red). Thermo-optical coefficients of different core thickness (400 nm or 370 nm) and of different cladding materials are calculated and labeled in (b).
Fig. 4
Fig. 4 (a) is a schematic of the FP resonator with two WBGs as DBR mirrors. The surface corrugation of the grating is 20 nm. The reflection spectrum of a single WBG is calculated by taking the square of Eq. (2) and is plotted in (b) using dashed line in red. The maximum reflectance is 90.6% and its FWHM bandwidth is 4.54 nm around 1533.5 nm. (b) also shows the spectral response of the FP resonator with a central resonance wavelength at 1534.3 nm. Three resonance wavelengths within the DBR bandwidth are shown and free spectral range of the FP resonator is around 1.86 nm.
Fig. 5
Fig. 5 Schematics of the device test and measurement system. Coherent radiation from a polarization controlled tunable laser is coupled to device sample placed on a temperature-controlled plate. The transmission spectrum is measured by an Optical Spectral Analyzer (OSA) modeled ANDO 6317 and insertion loss is evaluated by power measurement with a power meter.
Fig. 6
Fig. 6 (a) plots the transmission spectrum as a function of wavelength measured by the setup illustrated in Fig. 5 in solid line along with theoretical calculation in dashed line. The Fourier transform of measured transmittance is plotted in (b).
Fig. 7
Fig. 7 The shift in resonance wavelength of WBG device with (a) PECVD SiO2 cladding and (b) SOG cladding.
Fig. 8
Fig. 8 (a) shows the measured spectrum of the FP resonator and the shift in resonance wavelength of the FP resonator with PECVD SiO2 cladding is plotted in (b). The inset in (b) illustrates the red shift in resonance peak as temperature increases.

Tables (1)

Tables Icon

Table 1 Temperature Dependence of the Resonance Wavelength Shift

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t= m mcosh[m L d ]+psinh[m L d ]
r= κsinh[m L d ] mcosh[m L d ]+psinh[m L d ]
dλ dT = β 1 T + β 2 T +α 2π Λ β 1 λ + β 2 λ
Γ= (1R) 2 (1R) 2 +4R sin 2 [ β 1 L 0 +( β 1 + β 2 ) L eff ]
L eff = 1 2κ tanh( κ L WBG )
Δ λ FSR = λ 2 2 n g ( L 0 +2 L eff )
( β 1   L 0 +( β 1 + β 2   ) L eff ) T ΔT+  ( β 1 L 0 +( β 1 + β 2 ) L eff ) λ Δλ=0 
dλ dT = L 0 β 1 T + L eff ( β 1 T + β 2 T )+( β 1 + β 2 ) L eff T + L 0 α β 1 L 0 ( β 1 λ )+ L eff ( β 1 λ + β 2 λ )+( β 1 + β 2 ) L eff λ
δλ= 2πΛ λ( β 1 + β 2 ) ( δΛ Λ + δ β 1 2 β 1 + δ β 2 2 β 2 )

Metrics