Abstract

In-volume, self-assembled, three-dimensional, periodic micro-nano structures are induced in quartz crystal by tightly focused, 500-kHz femtosecond laser pulses. With suitable pulse energy, three different types of periodic structures can be observed in modified regions using scanning electron microscopy. The first one with period (ΛE) of ~400 nm in the direction of the laser polarization, i.e. nanograting, shows indicative features similar to that in fused silica. The second one with period (ΛS) in the scan direction and the third one with period (Λk) in the laser propagation direction are both equally spaced by ~1 μm, which is close to the laser wavelength. Moreover, the structure with period (Λk) covers almost the whole cross-section of modified regions, which is distinctive to that observed in fused silica. Through the comparison of the structures induced by 1-kHz pluses and those by 500-kHz pluses, we deduce that the heat accumulation effect may have a positive influence on the formation of nanogratings in quartz crystal.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel

Ausra Cerkauskaite, Rokas Drevinskas, Alexey O. Rybaltovskii, and Peter G. Kazansky
Opt. Express 25(7) 8011-8021 (2017)

Ultrafast laser direct writing and nanostructuring in transparent materials

Martynas Beresna, Mindaugas Gecevičius, and Peter G. Kazansky
Adv. Opt. Photon. 6(3) 293-339 (2014)

Formation and applications of periodic structures in transparent materials induced by single fs laser beam

Fangteng Zhang, Yu Teng, Yongze Yu, Kaniyarakkal N. Sharafudeen, Kazuyuki Hirao, and Jianrong Qiu
Opt. Mater. Express 3(11) 1944-1951 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
    [Crossref]
  3. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
    [Crossref] [PubMed]
  4. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  5. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [Crossref] [PubMed]
  6. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [Crossref] [PubMed]
  7. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
    [Crossref] [PubMed]
  8. K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
    [Crossref] [PubMed]
  9. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
    [Crossref] [PubMed]
  10. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref] [PubMed]
  11. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  12. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  13. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  14. B. McMillen, C. Athanasiou, and Y. Bellouard, “Femtosecond laser direct-write waveplates based on stress-induced birefringence,” Opt. Express 24(24), 27239–27252 (2016).
    [Crossref] [PubMed]
  15. C. E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines (Basel) 6(9), 1365–1386 (2015).
    [Crossref]
  16. F. Zhang, H. Zhang, G. Dong, and J. Qiu, “Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing,” J. Opt. Soc. Am. B 31(4), 860–864 (2014).
    [Crossref]
  17. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
    [Crossref]
  18. J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
    [Crossref] [PubMed]
  19. S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
    [Crossref]
  20. A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
    [Crossref] [PubMed]
  21. M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
    [Crossref]
  22. Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
    [Crossref]
  23. C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
    [Crossref]
  24. A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
    [Crossref]
  25. A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
    [Crossref]
  26. A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  27. A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [Crossref]
  28. P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric crystals for photonic applications (Springer Series in Materials Science 2009).
  29. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer Berlin, 2005).
  30. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
    [Crossref]
  31. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
    [Crossref] [PubMed]
  32. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
    [Crossref]
  33. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
    [Crossref]
  34. P. Umari, A. Pasquarello, and A. Dal Corso, “Raman scattering intensities in α-quartz: A first-principles investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 63(9), 094305 (2001).
    [Crossref]
  35. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  36. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
    [Crossref]
  37. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  38. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
    [Crossref] [PubMed]
  39. M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
    [Crossref]
  40. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express 14(21), 10117–10124 (2006).
    [Crossref] [PubMed]
  41. J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
    [Crossref]

2017 (3)

2016 (7)

J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
[Crossref] [PubMed]

B. McMillen, C. Athanasiou, and Y. Bellouard, “Femtosecond laser direct-write waveplates based on stress-induced birefringence,” Opt. Express 24(24), 27239–27252 (2016).
[Crossref] [PubMed]

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
[Crossref]

2015 (2)

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

C. E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines (Basel) 6(9), 1365–1386 (2015).
[Crossref]

2014 (3)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

F. Zhang, H. Zhang, G. Dong, and J. Qiu, “Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing,” J. Opt. Soc. Am. B 31(4), 860–864 (2014).
[Crossref]

2013 (3)

2012 (2)

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

2011 (1)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

2010 (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (3)

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

2006 (2)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express 14(21), 10117–10124 (2006).
[Crossref] [PubMed]

2005 (4)

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
[Crossref]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (3)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

2001 (1)

P. Umari, A. Pasquarello, and A. Dal Corso, “Raman scattering intensities in α-quartz: A first-principles investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 63(9), 094305 (2001).
[Crossref]

1999 (1)

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Arai, A.

Arai, A. Y.

Athanasiou, C.

Athanasiou, C. E.

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

C. E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines (Basel) 6(9), 1365–1386 (2015).
[Crossref]

Bellouard, Y.

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

B. McMillen, C. Athanasiou, and Y. Bellouard, “Femtosecond laser direct-write waveplates based on stress-induced birefringence,” Opt. Express 24(24), 27239–27252 (2016).
[Crossref] [PubMed]

C. E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines (Basel) 6(9), 1365–1386 (2015).
[Crossref]

Beresna, M.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Borowiec, A.

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Bovatsek, J.

Brandt, N.

Bricchi, E.

Brisset, F.

Brown, W.

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Cao, J.

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Chen, D.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Cheng, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Corkum, P. B.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Dal Corso, A.

P. Umari, A. Pasquarello, and A. Dal Corso, “Raman scattering intensities in α-quartz: A first-principles investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 63(9), 094305 (2001).
[Crossref]

Dong, G.

Döring, S.

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Eaton, S.

Fan, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Fedotov, S. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Gottmann, J.

Guo, C.

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Hasselbrink, E. F.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[Crossref] [PubMed]

Haugen, H.

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

He, F.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Heinrich, M.

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Herman, P.

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Hongler, M. O.

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

Horn-Solle, H.

Hunt, A.

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Hunt, A. J.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[Crossref] [PubMed]

Jia, F.

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Kaminskii, A. A.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

Kanehira, S.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Kavokin, A. V.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Kazansky, P. G.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express 14(21), 10117–10124 (2006).
[Crossref] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
[Crossref]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Ke, K.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[Crossref] [PubMed]

Klappauf, B. G.

Lancry, M.

Liao, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Lipatiev, A. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Liu, C.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Liu, H.

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Lotarev, S. V.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Makin, V.

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Malshe, A.

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Mazerolles, L.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McMillen, B.

Meyhöfer, E.

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Midorikawa, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Miese, C.

Miura, K.

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Molian, P.

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Mori, M.

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Mourou, G.

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Nolte, S.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Ozkan, A.

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Pasquarello, A.

P. Umari, A. Pasquarello, and A. Dal Corso, “Raman scattering intensities in α-quartz: A first-principles investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 63(9), 094305 (2001).
[Crossref]

Peschel, U.

Plech, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
[Crossref]

Poumellec, B.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
[Crossref]

F. Zhang, H. Zhang, G. Dong, and J. Qiu, “Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing,” J. Opt. Soc. Am. B 31(4), 860–864 (2014).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Railkar, T.

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Rajeev, P. P.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Rayner, D. M.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Richter, S.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Rybaltovskii, A. O.

Sakakura, M.

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Sei, T.

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Shah, L.

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
[Crossref]

Shen, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shirk, M.

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Sigaev, V. N.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Simova, E.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Solas, D.

Song, J.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Spooner, G.

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Sugioka, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
[Crossref]

Taylor, R. S.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Taylor, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Tünnermann, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Udono, H.

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Umari, P.

P. Umari, A. Pasquarello, and A. Dal Corso, “Raman scattering intensities in α-quartz: A first-principles investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 63(9), 094305 (2001).
[Crossref]

Vorobyev, A.

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Wei, X.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Withford, M. J.

Wortmann, D.

Xu, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Yang, W.

Yoshino, F.

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Zimmermann, F.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Anal. Chem. (1)

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. Spooner, E. Meyhöfer, G. Mourou, and A. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Appl. Phys. Lett. (4)

A. Ozkan, A. Malshe, T. Railkar, W. Brown, M. Shirk, and P. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[Crossref]

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, and K. Miura, “Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 122(3), 159 (2016).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

J. Appl. Phys. (1)

A. Vorobyev, V. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

Lab Chip (1)

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “The onset of ultrashort pulse-induced nanogratings,” Laser Photonics Rev. 10(2), 327–334 (2016).
[Crossref]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref] [PubMed]

Micromachines (Basel) (1)

C. E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines (Basel) 6(9), 1365–1386 (2015).
[Crossref]

Mod. Phys. Lett. B (1)

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-Modification inside Transparent Materials by Femtosecond Laser Single Beam,” Mod. Phys. Lett. B 19(5), 225–238 (2005).
[Crossref]

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

P. Umari, A. Pasquarello, and A. Dal Corso, “Raman scattering intensities in α-quartz: A first-principles investigation,” Phys. Rev. B Condens. Matter Mater. Phys. 63(9), 094305 (2001).
[Crossref]

Phys. Rev. Lett. (3)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, and H. Udono, “Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(4), 715–721 (2015).
[Crossref]

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
[Crossref]

Other (2)

P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric crystals for photonic applications (Springer Series in Materials Science 2009).

D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer Berlin, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM images (top view) of lines inscribed by femtosecond pulses with various pulse energies: (a) 0.8 μJ, (b) 1.2 μJ, (c) 1.6 μJ after being etched with HF acid. The polarization direction of incident laser beam is indicated by blue arrows on the top of each column while the red arrow indicates the writing direction. Processing conditions: the scan speed is 50 μm/s; the pulse duration is 370 fs, the repetition rate is 500 kHz. The optical axis of the crystal sample is parallel to the laser propagation direction.
Fig. 2
Fig. 2 SEM images (top view) of 5 rows of lines inscribed by different polarized pulses with pulse energy fixed at 1.6 μJ, the adjacent rows are separated by 3 μm along laser propagation direction. The schematic on the left illustrates the cross section of laser modified zone. The wave vector k indicates the laser propagation direction. The incident laser polarization direction for each column is indicated (black arrows). The images in each column show the features of laser modified regions on different horizontal planes after polishing followed by 1 vol. % HF etching for 6 h.
Fig. 3
Fig. 3 SEM images of cross sections of the lines inscribed with different pulse energy in two polarization cases: (a) polarization parallel (E∥S) and (b) perpendicular (E⊥S) to the scan direction. The period Λk along laser propagation direction is observed with pulse energy ≥1.2 μJ when polarization direction is perpendicular to scan direction.
Fig. 4
Fig. 4 (a) Raman spectra of the quartz sample on unmodified region (matrix) and exposed region irradiated by 500 kHz pulses with polarization parallel (0 deg) and perpendicular (90 deg) to scan direction (Inset shows the relative intensity of the two typical peaks 128.5 cm−1,208.5 cm−1 normalized at 465 cm−1), (b) the FWHMs of the three Raman peaks centered at 128.5 cm−1,208.5 cm−1, and 465 cm−1 at different position, and (c, d, e) the experimental data and Voigt fitting of three Raman peaks in the irradiated area to determine the FWHM. The pulse energy and scanning speed are 1.6 μJ and 50 μm/s, respectively.
Fig. 5
Fig. 5 (a) SEM images (top view) of the lines inscribed by 1 kHz femtosecond pulses with pulse energy of 1 μJ (the left three images) and 1.8 μJ (the right image) after being etched by hydrofluoric acid. (b) and (c) are optical microscope images (top view) of lines inscribed by 1 kHz femtosecond pulses and 500 kHz femtosecond pulses, respectively. The laser pulse energy is 1 μJ, and the scan speed is 5μm/s for 1 kHz and 50 μm/s for 500 kHz. The laser polarization direction is indicated by blue arrows.

Metrics