Abstract

In this paper, we propose an approach to achieve a sub-Rayleigh resolution image in a single-pixel imaging system. In our scheme, Gaussian- and doughnut-shaped spots are used to alternatively illuminate an object and a single-pixel detector located after the object is employed to collect the transmitted light as two bucket signals, respectively. The image is reconstructed by assigning the difference of the bucket signals to the central position of the illumination spot. In this way, the spatial resolution of the resulting image is determined by the width of subtraction of the two spots. Combined with the deconvolution algorithm, we achieve a spatial resolution beyond the Rayleigh limit of single-pixel imaging by a factor of 22. We also propose a differential algorithm to keep the visibility of single-pixel imaging at a high level, which will be more suitable for applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-Rayleigh single-pixel imaging via optical fluctuation

Peilong Hong
Opt. Lett. 44(7) 1754-1757 (2019)

Three-dimensional single-pixel imaging of incoherent light with spatiotemporally modulated illumination

Jeffrey J. Field, Keith A. Wernsing, Jeff A. Squier, and Randy A. Bartels
J. Opt. Soc. Am. A 35(8) 1438-1449 (2018)

Radon single-pixel imaging with projective sampling

Shi Dongfeng, Huang Jian, Meng Wenwen, Yin Kaixin, Sun Baoqing, Wang Yingjian, Yuan Kee, Xie Chenbo, Liu Dong, and Zhu Wenyue
Opt. Express 27(10) 14594-14609 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
    [Crossref]
  2. S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Achieving sub-Rayleigh resolution via thresholding,” Opt. Express 19(6), 5480–5488 (2011).
    [Crossref] [PubMed]
  3. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref] [PubMed]
  4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref] [PubMed]
  5. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref] [PubMed]
  6. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
    [Crossref]
  7. R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
    [Crossref]
  8. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  9. B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  10. S. J. Bentley and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express 12(23), 5735–5740 (2004).
    [Crossref] [PubMed]
  11. R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
    [Crossref]
  12. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
    [Crossref]
  13. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
    [Crossref] [PubMed]
  14. Y. Wu, P. Ye, I. O. Mirza, G. R. Arce, and D. W. Prather, “Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM),” Opt. Express 18(24), 24565–24578 (2010).
    [Crossref] [PubMed]
  15. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref] [PubMed]
  16. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
    [Crossref] [PubMed]
  17. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
    [Crossref] [PubMed]
  18. D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
    [Crossref] [PubMed]
  19. P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34(8), 1222–1224 (2009).
    [Crossref] [PubMed]
  20. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
    [Crossref] [PubMed]
  21. F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
    [Crossref]
  22. X. H. Chen, F. H. Kong, Q. Fu, S. Y. Meng, and L. A. Wu, “Sub-Rayleigh resolution ghost imaging by spatial low-pass filtering,” Opt. Lett. 42(24), 5290–5293 (2017).
    [Crossref] [PubMed]
  23. A. Rodríguez, P. Clemente, E. Irles, E. Tajahuerce, and J. Lancis, “Resolution analysis in computational imaging with patterned illumination and bucket detection,” Opt. Lett. 39(13), 3888–3891 (2014).
    [Crossref] [PubMed]
  24. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
    [Crossref]
  25. Y. Shechtman, S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse images carried by incoherent light,” Opt. Lett. 35(8), 1148–1150 (2010).
    [Crossref] [PubMed]
  26. K. Kuplicki and K. W. C. Chan, “High-order ghost imaging using non-Rayleigh speckle sources,” Opt. Express 24(23), 26766–26776 (2016).
    [Crossref] [PubMed]
  27. J. E. Oh, Y. W. Cho, G. Scarcelli, and Y. H. Kim, “Sub-Rayleigh imaging via speckle illumination,” Opt. Lett. 38(5), 682–684 (2013).
    [Crossref] [PubMed]
  28. Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
    [Crossref] [PubMed]
  29. E. F. Zhang, H. Z. Lin, W. T. Liu, Q. Li, and P. X. Chen, “Sub-Rayleigh-diffraction imaging via modulating classical light,” Opt. Express 23(26), 33506–33513 (2015).
    [Crossref]
  30. J. Sprigg, T. Peng, and Y. H. Shih, “Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation,” Sci. Reports 6(1), 38077 (2016).
    [Crossref]
  31. M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
    [Crossref]
  32. J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
    [Crossref] [PubMed]
  33. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
    [Crossref] [PubMed]
  34. E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett. 86(1), 14001 (2009).
    [Crossref]
  35. Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).
  36. A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
    [Crossref] [PubMed]
  37. D. Wang, D. Meza, Y. Wang, L. Gao, and J. T. C. Liu, “Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution,” Opt. Lett. 39(18), 5431–5434 (2014).
    [Crossref]
  38. Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
    [Crossref]
  39. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29(1), 11–13 (2004).
    [Crossref] [PubMed]
  40. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref] [PubMed]
  41. X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
    [Crossref]
  42. X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35(8), 1166–1168 (2010).
    [Crossref] [PubMed]
  43. R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
    [Crossref]
  44. H. Chen, T. Peng, and Y. Shih, “100% Correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
    [Crossref]
  45. M. Chagnon, M. Osman, Q. Zhuge, X. Xu, and D. V. Plant, “Analysis and experimental demonstration of novel 8PolSK-QPSK modulation at 5 bits/symbol for passive mitigation of nonlinear impairments,” Opt. Express 21(25), 30204–30211 (2013).
    [Crossref]
  46. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  47. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
    [Crossref] [PubMed]

2018 (1)

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

2017 (3)

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

X. H. Chen, F. H. Kong, Q. Fu, S. Y. Meng, and L. A. Wu, “Sub-Rayleigh resolution ghost imaging by spatial low-pass filtering,” Opt. Lett. 42(24), 5290–5293 (2017).
[Crossref] [PubMed]

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

2016 (5)

J. Sprigg, T. Peng, and Y. H. Shih, “Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation,” Sci. Reports 6(1), 38077 (2016).
[Crossref]

K. Kuplicki and K. W. C. Chan, “High-order ghost imaging using non-Rayleigh speckle sources,” Opt. Express 24(23), 26766–26776 (2016).
[Crossref] [PubMed]

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (5)

2013 (6)

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

H. Chen, T. Peng, and Y. Shih, “100% Correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

M. Chagnon, M. Osman, Q. Zhuge, X. Xu, and D. V. Plant, “Analysis and experimental demonstration of novel 8PolSK-QPSK modulation at 5 bits/symbol for passive mitigation of nonlinear impairments,” Opt. Express 21(25), 30204–30211 (2013).
[Crossref]

J. E. Oh, Y. W. Cho, G. Scarcelli, and Y. H. Kim, “Sub-Rayleigh imaging via speckle illumination,” Opt. Lett. 38(5), 682–684 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
[Crossref]

2012 (5)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref] [PubMed]

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

2009 (4)

2008 (2)

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2006 (2)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

2005 (2)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Adolfsson, K.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Agafonov, I. N.

Arce, G. R.

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Barnett, S. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

S. J. Bentley and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express 12(23), 5735–5740 (2004).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bewersdorf, J.

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Booth, M. J.

Borgström, M. T.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Boyd, R. W.

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Burke, D.

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Chagnon, M.

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Chan, K. W. C.

Chekhova, M. V.

Chen, D. X.

Chen, H.

H. Chen, T. Peng, and Y. Shih, “100% Correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Chen, P. X.

Chen, X. H.

Chen, Z.

Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
[Crossref]

Chitnis, A. B.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Cho, Y. W.

Clemente, P.

Combs, C. A.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Dalle Nogare, D.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Edgar, M. P.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Eldar, Y. C.

Emiliani, V.

M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
[Crossref]

Fang, A. P.

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Fischer, R. S.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Fu, Q.

Gao, H.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
[Crossref]

Gao, L.

Gao, S. Y.

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Gazit, S.

Gibson, G. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

Gong, W. L.

Gould, T. J.

Guerrieri, F.

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

Guillon, M.

M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
[Crossref]

Han, S. S.

Hell, S. W.

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett. 86(1), 14001 (2009).
[Crossref]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Hell, S.W.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Hendry, E.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

Hobson, P. A.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

Hornett, S. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

Huang, D. J.

Irles, E.

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Kim, Y. H.

Kong, F. H.

Kuplicki, K.

Lancis, J.

Lauterbach, M. A.

M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, F. L.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
[Crossref]

Li, H.

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Li, M. F.

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

Li, Q.

E. F. Zhang, H. Z. Lin, W. T. Liu, Q. Li, and P. X. Chen, “Sub-Rayleigh-diffraction imaging via modulating classical light,” Opt. Express 23(26), 33506–33513 (2015).
[Crossref]

Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
[Crossref]

Li, Y.

Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
[Crossref]

Lin, H. Z.

Liu, J. T. C.

Liu, Q.

Liu, R. F.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
[Crossref]

Liu, W. T.

Liu, X. F.

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

Lugiato, L.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Luo, K. H.

Maccone, L.

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Meng, S. Y.

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

Meza, D.

Mione, M.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Mirza, I. O.

Mitchell, K. J.

Mouradian, S.

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

O’Sullivan, M. N.

Oh, J. E.

Oracz, J.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Osman, M.

Padgett, M. J.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Paganin, D. M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Parekh, S. H.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Peng, T.

J. Sprigg, T. Peng, and Y. H. Shih, “Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation,” Sci. Reports 6(1), 38077 (2016).
[Crossref]

H. Chen, T. Peng, and Y. Shih, “100% Correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Phillips, D. B.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Plant, D. V.

Prather, D. W.

Prinz, C. N.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Radwell, N.

Radzewicz, C.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Rittweger, E.

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett. 86(1), 14001 (2009).
[Crossref]

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Rodríguez, A.

Sahl, S. J.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Sala, V. G.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

Scarcelli, G.

J. E. Oh, Y. W. Cho, G. Scarcelli, and Y. H. Kim, “Sub-Rayleigh imaging via speckle illumination,” Opt. Lett. 38(5), 682–684 (2013).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Segev, M.

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Achieving sub-Rayleigh resolution via thresholding,” Opt. Express 19(6), 5480–5488 (2011).
[Crossref] [PubMed]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shechtman, Y.

Shen, X.

Shi, J.

Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
[Crossref]

Shih, Y.

H. Chen, T. Peng, and Y. Shih, “100% Correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Shih, Y. H.

J. Sprigg, T. Peng, and Y. H. Shih, “Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation,” Sci. Reports 6(1), 38077 (2016).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Shroff, H.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Soltani, A.

M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
[Crossref]

Sprigg, J.

J. Sprigg, T. Peng, and Y. H. Shih, “Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation,” Sci. Reports 6(1), 38077 (2016).
[Crossref]

Stantchev, R. I.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Sun, B.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Sun, B. Q.

Sun, M. J.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

Szameit, A.

Tajahuerce, E.

Taylor, J. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

Temprine, K.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Tisa, S.

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

Trisnadi, J. I.

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Wang, D.

Wang, F. R.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

Wang, S. X.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

Wang, Y.

Wang, Y. L.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Welsh, S. S.

Westphal, V.

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Wildanger, D.

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett. 86(1), 14001 (2009).
[Crossref]

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Wong, F. N. C.

S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Achieving sub-Rayleigh resolution via thresholding,” Opt. Express 19(6), 5480–5488 (2011).
[Crossref] [PubMed]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

Wu, L. A.

Wu, Y.

Xian, R.

Xu, X.

Yao, X. R.

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

Ye, P.

York, A. G.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Yu, W. K.

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

Zappa, F.

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

Zeng, G.

Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
[Crossref]

Zhai, G. J.

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

Zhang, E. F.

Zhang, P.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
[Crossref]

Zhang, P. L.

Zhou, Y.

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
[Crossref]

Zhou, Y. N.

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

Zhuge, Q.

AIP Adv. (1)

X. F. Liu, M. F. Li, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3(5), 052121 (2013).
[Crossref]

Appl. Phys. Lett. (2)

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

ArXiv (1)

Y. L. Wang, Y. N. Zhou, S. X. Wang, F. R. Wang, R. F. Liu, P. Zhang, H. Gao, and F. L. Li, “Enhancement of spatial resolution of ghost imaging via localizing and thresholding,” ArXiv 1805.03795 (2018).

Europhys. Lett. (1)

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett. 86(1), 14001 (2009).
[Crossref]

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

Nano Lett. (1)

J. Oracz, K. Adolfsson, V. Westphal, C. Radzewicz, M. T. Borgström, S. J. Sahl, C. N. Prinz, and S.W. Hell, “Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature,” Nano Lett. 17(4), 2652–2659 (2017).
[Crossref] [PubMed]

Nat. methods (1)

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Nature (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[Crossref] [PubMed]

Opt. Express (9)

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref]

K. Kuplicki and K. W. C. Chan, “High-order ghost imaging using non-Rayleigh speckle sources,” Opt. Express 24(23), 26766–26776 (2016).
[Crossref] [PubMed]

E. F. Zhang, H. Z. Lin, W. T. Liu, Q. Li, and P. X. Chen, “Sub-Rayleigh-diffraction imaging via modulating classical light,” Opt. Express 23(26), 33506–33513 (2015).
[Crossref]

B. Q. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

S. J. Bentley and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express 12(23), 5735–5740 (2004).
[Crossref] [PubMed]

S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Achieving sub-Rayleigh resolution via thresholding,” Opt. Express 19(6), 5480–5488 (2011).
[Crossref] [PubMed]

Y. Wu, P. Ye, I. O. Mirza, G. R. Arce, and D. W. Prather, “Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM),” Opt. Express 18(24), 24565–24578 (2010).
[Crossref] [PubMed]

M. Chagnon, M. Osman, Q. Zhuge, X. Xu, and D. V. Plant, “Analysis and experimental demonstration of novel 8PolSK-QPSK modulation at 5 bits/symbol for passive mitigation of nonlinear impairments,” Opt. Express 21(25), 30204–30211 (2013).
[Crossref]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref] [PubMed]

Opt. Lett. (10)

X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35(8), 1166–1168 (2010).
[Crossref] [PubMed]

J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29(1), 11–13 (2004).
[Crossref] [PubMed]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34(8), 1222–1224 (2009).
[Crossref] [PubMed]

J. E. Oh, Y. W. Cho, G. Scarcelli, and Y. H. Kim, “Sub-Rayleigh imaging via speckle illumination,” Opt. Lett. 38(5), 682–684 (2013).
[Crossref] [PubMed]

Y. L. Wang, F. R. Wang, R. F. Liu, D. X. Chen, H. Gao, P. Zhang, and F. L. Li, “Spatial sub-Rayleigh imaging analysis via speckle laser illumination,” Opt. Lett. 40(22), 5323–5326 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse images carried by incoherent light,” Opt. Lett. 35(8), 1148–1150 (2010).
[Crossref] [PubMed]

X. H. Chen, F. H. Kong, Q. Fu, S. Y. Meng, and L. A. Wu, “Sub-Rayleigh resolution ghost imaging by spatial low-pass filtering,” Opt. Lett. 42(24), 5290–5293 (2017).
[Crossref] [PubMed]

A. Rodríguez, P. Clemente, E. Irles, E. Tajahuerce, and J. Lancis, “Resolution analysis in computational imaging with patterned illumination and bucket detection,” Opt. Lett. 39(13), 3888–3891 (2014).
[Crossref] [PubMed]

D. Wang, D. Meza, Y. Wang, L. Gao, and J. T. C. Liu, “Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution,” Opt. Lett. 39(18), 5431–5434 (2014).
[Crossref]

Optica (1)

Phys. Rev. A (4)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

R. F. Liu, A. P. Fang, Y. Zhou, P. Zhang, S. Y. Gao, H. Li, H. Gao, and F. L. Li, “Enhanced visibility of ghost imaging and interference using squeezed thermal light,” Phys. Rev. A 93(1), 013822 (2016).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

H. Chen, T. Peng, and Y. Shih, “100% Correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Phys. Rev. Lett. (6)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-Photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105(16), 163602 (2010).
[Crossref]

Proc. Natl. Acad. Sci. (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Sci. Adv. (2)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector non-invasive,” Sci. Adv. 2(6), e1600190 (2016).
[Crossref] [PubMed]

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref] [PubMed]

Sci. Reports (3)

R. F. Liu, P. Zhang, Y. Zhou, H. Gao, and F. L. Li, “Super sub-wavelength patterns in photon coincidence detection,” Sci. Reports 4, 4068 (2014).
[Crossref]

J. Sprigg, T. Peng, and Y. H. Shih, “Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation,” Sci. Reports 6(1), 38077 (2016).
[Crossref]

M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Reports 3, 2050 (2013).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

The Eur. Phys. J. Appl. Phys. (1)

Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal ghost imaging based on deconvolution,” The Eur. Phys. J. Appl. Phys. 67(1), 10501 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of SPI scheme. (b) Expanded view of a Gaussian-shaped light spot. (c) Expanded view of a doughnut-shaped light spot, where the subtraction-spot size is 0.7 times that of the Gaussian spot. (d) The subtraction spot reconstructed by subtracting the doughnut spot (c) from the Gaussian spot (b). (e) Profiles of the light spots (b), (c) and (d). The blue, green and red curves correspond to the Gaussian spot (b), doughnut spot (c) and the subtraction spot (d), respectively.
Fig. 2
Fig. 2 Simulated images of a pinhole object located at ρ = 0 , considered as the point spread functions (PSFs) of single-pixel imaging (SPI). Blue curve, PSF of SPI, and FWHM of the PSF is used to quantify the Rayleigh limit. Red curve, PSF of subtraction-spot illumination SPI (SSPI). Green curve, PSF of deconvolved SSPI (DSSPI), and its FWHM is 0.7 times that of SSPI system.
Fig. 3
Fig. 3 Experimental setup of sub-Rayleigh SPI setup. See text for details.
Fig. 4
Fig. 4 Experimental results to demonstrate the resolution enhancement. (a) SPI result of the USAF chart, 550 × 550 pixels, reconstructed with correlations between the reference Gaussian spots and the corresponding bucket signals. (b) SSPI result, obtained by assigning the bucket signal difference of the Gaussian and the doughnut light spots to the corresponding central position of the Gaussian spot. (c) DSSPI result, obtained by deconvolving the PSF from SSPI result (b). Panels (d) and (e) show intensity profiles of USAF elements 6-6 (yellow line) and 7-6 (green line), respectively. Blue, red and green curves correspond to the sectional images of SPI, SSPI and DSSPI, respectively. The number of sampling frames to reconstruct an image is N = 500 , 000 .
Fig. 5
Fig. 5 Experimental results for biological image. (a) Image of portion of a bee’s working leg captured with the CCD camera. (b) SPI result of the boxed region of 200 × 200 pixels shown in (a). FWHM of illumination Gaussian spots is 6.8 μm. (c) SSPI result. (d) DSSPI result. The number of sampling frames to reconstruct an image is N = 400 , 000 . The scaled bar is shown in the bottom right corner.
Fig. 6
Fig. 6 Experimental DSSPI results for image visibility enhancement. (a) DSSPI result with multi-spot illumination. Each light pattern consists of 30 spots and the sampling frames to reconstruct an image is N = 300 , 000 . The image visibility is 29.5%. (b) According to the multi-spot differential algorithm, a better image’s visibility at 87.6% can be achieved with a total sampling frames N = 300 , 000 .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E b ( ρ , ρ 0 ) = T ( ρ ) E ( ρ ρ 0 ) .
I b ( ρ 0 ) = d ρ | E ( ρ ρ 0 ) | 2 | T ( ρ ) | 2 .
I r ( ρ r , ρ 0 ) = | E ( ρ r ρ 0 ) | 2 .
C ( ρ r ) = d ρ 0 I r ( ρ r , ρ 0 ) I b ( ρ 0 ) = | T ( ρ r ) | 2 | E ( ρ r ) | 2 | E ( ρ r ) | 2 .  
Δ I b ( ρ 0 ) = d ρ [ | E g ( ρ ρ 0 ) | 2 | E d ( ρ ρ 0 ) | 2 ] | T ( ρ ) | 2 = d ρ | E s ( ρ ρ r ) | 2 | T ( ρ ) | 2 ,
C ( ρ r ) = d ρ 0 d ρ | E s ( ρ r ρ 0 ) | 2 | E s ( ρ ρ 0 ) | 2 | T ( ρ ) | 2 = | T ( ρ r ) | 2 | E s ( ρ r ) | 2 | E s ( ρ r ) | 2 .
C ( ρ r ) = I 0 d ρ | E s ( ρ ρ r ) | 2 | T ( ρ ) | 2 = | T ( ρ ) | 2 | E s ( ρ r ) | 2 .
C ( ρ r ) = i , j = 1 M d ρ i d ρ j I r ( ρ r , ρ i ) Δ I b ( ρ j ) = I 0 i = 1 M d ρ i δ ( ρ r ρ i ) d ρ | E s ( ρ ρ i ) | 2 | T ( ρ ) | 2 + I 0 i = 1 M j i M d ρ i d ρ j δ ( ρ r ρ i ) d ρ | E s ( ρ ρ j ) | 2 | T ( ρ ) | 2 ,
C ( ρ r ) = M I 0 d ρ | E s ( ρ ρ r ) | 2 | T ( ρ ) | 2 + M ( M 1 ) I 0 d ρ d ρ ' | E s ( ρ ρ ' ) | 2 | T ( ρ ) | 2 .
Δ I '   b k ( ρ k ) = 1 M 1 i = 1 M Δ I b i Δ I b k = I 0 d ρ | E s ( ρ ρ k ) | 2 | T ( ρ ) | 2 .
C ( ρ r ) = k = 1 M d ρ k I r ( ρ r , ρ k ) Δ I '   b k ( ρ k ) = M I 0 d ρ | E s ( ρ ρ r ) | 2 | T ( ρ ) | 2 .

Metrics