Abstract

The magnetostrictive effect provides an opportunity for exploring fundamental phenomena related to the phonon-magnon interaction. Here we show a tunable slow light in a cavity magnetomechanical system consisting of photon, magnon and phonon modes with a nonlinear phonon-magnon interaction, which originates from magnetostrictive forces. For a strong photon-magnon coupling strength, we can observe a transparency (absorption) window for the probe by placing a strong control field on the red (blue) detuned sideband of the hybridized modes, which are comprised of photons and magnons. In this work, we mainly show the characteristic changes in dispersion in the range of the transparency window. The value of group delay can be continuously adjusted by using different frequencies of magnon, which are determined by the external bias magnetic field and therefore can be conveniently tuned in a broad range. Both the intensity and the frequency of the control field have an influence on the transformation from subluminal to superluminal propagation and vice versa. Furthermore, one may achieve long-lived slow light (group delay of millisecond order) by enlarging the pump power. These results may find applications in information interconversion based on coherent coupling among photons, phonons and magnons.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnon-induced transparency and amplification in 𝒫𝒯-symmetric cavity-magnon system

Bao Wang, Zeng-Xing Liu, Cui Kong, Hao Xiong, and Ying Wu
Opt. Express 26(16) 20248-20257 (2018)

Optomechanically induced transparency and the long-lived slow light in a nonlinear system

Qing He, Fazal Badshah, Rafi Ud Din, Haiyang Zhang, Yong Hu, and Guo-Qin Ge
J. Opt. Soc. Am. B 35(7) 1649-1657 (2018)

Tunable slow and fast light in parity-time-symmetric optomechanical systems with phonon pump

Cheng Jiang, Yuanshun Cui, Zhangyin Zhai, Hualing Yu, Xiaowei Li, and Guibin Chen
Opt. Express 26(22) 28834-28847 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
    [Crossref] [PubMed]
  2. X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
    [Crossref] [PubMed]
  3. M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
    [Crossref]
  4. C. Kittel, “On the Theory of Ferromagnetic Resonance Absorption,” Phys. Rev. 73, 155 (1948).
    [Crossref]
  5. D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
    [Crossref]
  6. Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
    [Crossref]
  7. H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
    [Crossref] [PubMed]
  8. S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
    [Crossref]
  9. Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
    [Crossref]
  10. L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
    [Crossref] [PubMed]
  11. Z.-X. Liu, C. You, B. Wang, H. Xiong, and Y. Wu, “Phase-mediated magnon chaos-order transition in cavity optomagnonics,” Opt. Lett. 44, 507–510 (2019).
    [Crossref] [PubMed]
  12. N. Kostylev, M. Goryachev, and M. E. Tobar, “Superstrong coupling of a microwave cavity to yttrium iron garnet magnons,” Appl. Phys. Lett. 108, 062402 (2016).
    [Crossref]
  13. J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
    [Crossref]
  14. Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
    [Crossref]
  15. X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
    [Crossref]
  16. B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, “Magnon induced transparency and amplification in PT-symmetric cavity magnon system,” Opt. Express 26, 20248 (2018).
    [Crossref] [PubMed]
  17. L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
    [Crossref] [PubMed]
  18. Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
    [Crossref]
  19. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
    [Crossref] [PubMed]
  20. L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
    [Crossref] [PubMed]
  21. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
    [Crossref] [PubMed]
  22. X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
    [Crossref] [PubMed]
  23. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [Crossref] [PubMed]
  24. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
    [Crossref]
  25. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
    [Crossref] [PubMed]
  26. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  27. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref] [PubMed]
  28. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
    [Crossref]
  29. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
    [Crossref]
  30. G.-L. Cheng, W.-X Zhong, and A.-X. Chen, “Phonon induced phase grating in quantum dot system,” Opt. Express 239870–9880 (2015).
    [Crossref] [PubMed]
  31. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [Crossref]
  32. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
    [Crossref]
  33. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17, 19–23 (2006).
    [Crossref]
  34. M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
    [Crossref] [PubMed]
  35. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
    [Crossref] [PubMed]
  36. Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
    [Crossref]
  37. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
    [Crossref]
  38. H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).
    [Crossref]
  39. J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” Phys. Rev. Lett. 121, 203601 (2018).
    [Crossref] [PubMed]
  40. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
    [Crossref] [PubMed]
  41. B. Z. Liu and J. H. Peng, Nonlinear Dynamics (Higher Education Press, 2004).
  42. E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
    [Crossref]
  43. H. Xiong, J.-H. Gan, and Y. Wu, “Kuznetsov-Ma soliton dynamics based on the mechanical effect of light,” Phys. Rev. Lett. 119, 153901 (2017).
    [Crossref] [PubMed]
  44. D. Walls and G. Milburn, Quantum Optics (Springer, New York, 2008).
    [Crossref]
  45. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2004).
  46. B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
    [Crossref] [PubMed]
  47. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
    [Crossref]
  48. C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
    [Crossref]
  49. M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).
    [Crossref]
  50. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [Crossref] [PubMed]

2019 (1)

2018 (5)

B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, “Magnon induced transparency and amplification in PT-symmetric cavity magnon system,” Opt. Express 26, 20248 (2018).
[Crossref] [PubMed]

Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).
[Crossref]

J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” Phys. Rev. Lett. 121, 203601 (2018).
[Crossref] [PubMed]

2017 (3)

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

H. Xiong, J.-H. Gan, and Y. Wu, “Kuznetsov-Ma soliton dynamics based on the mechanical effect of light,” Phys. Rev. Lett. 119, 153901 (2017).
[Crossref] [PubMed]

2016 (5)

X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
[Crossref] [PubMed]

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

N. Kostylev, M. Goryachev, and M. E. Tobar, “Superstrong coupling of a microwave cavity to yttrium iron garnet magnons,” Appl. Phys. Lett. 108, 062402 (2016).
[Crossref]

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

2015 (8)

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).
[Crossref]

G.-L. Cheng, W.-X Zhong, and A.-X. Chen, “Phonon induced phase grating in quantum dot system,” Opt. Express 239870–9880 (2015).
[Crossref] [PubMed]

2014 (5)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
[Crossref] [PubMed]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

2013 (1)

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

2011 (2)

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

2010 (3)

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

2008 (2)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[Crossref]

2007 (2)

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

2006 (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17, 19–23 (2006).
[Crossref]

2005 (2)

2004 (1)

2000 (1)

M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

1987 (1)

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

1982 (1)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]

1948 (1)

C. Kittel, “On the Theory of Ferromagnetic Resonance Absorption,” Phys. Rev. 73, 155 (1948).
[Crossref]

Adachi, H.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Agarwal, G. S.

J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” Phys. Rev. Lett. 121, 203601 (2018).
[Crossref] [PubMed]

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

Akram, M. J.

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[Crossref]

Bai, L.

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Bai, L. H.

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Barbour, R.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

Bauer, G. E. W.

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bender, C. M.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

Bourhill, J.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

Boyd, R. W.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17, 19–23 (2006).
[Crossref]

Camacho, R. M.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Cao, Y.

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Chang, S.-W.

Chang-Hasnain, C. J.

Chen, A.-X.

Chen, G.

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

Chen, Y. P.

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Cheng, G.-L.

Chu, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]

Chuang, S.-L.

Creedon, D. L.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Cui, Y.

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

DeJesus, E. X.

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Fan, X.

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Fan, Y.

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Farr, W. G.

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Fiore, V.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17, 19–23 (2006).
[Crossref]

Gan, J.-H.

H. Xiong, J.-H. Gan, and Y. Wu, “Kuznetsov-Ma soliton dynamics based on the mechanical effect of light,” Phys. Rev. Lett. 119, 153901 (2017).
[Crossref] [PubMed]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2004).

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17, 19–23 (2006).
[Crossref]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Goennenwein, S. T. B.

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Goryachev, M.

N. Kostylev, M. Goryachev, and M. E. Tobar, “Superstrong coupling of a microwave cavity to yttrium iron garnet magnons,” Appl. Phys. Lett. 108, 062402 (2016).
[Crossref]

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Greifenstein, M.

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Gross, R.

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Gui, Y. S.

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

Harder, M.

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Hocke, F.

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Howell, J. C.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Hu, C. M.

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Hu, C.-M.

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Huang, S.

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

Huebl, H.

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Hyde, P.

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

Ieda, J.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[Crossref] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

Ishikawa, T.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

Ishino, S.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

Jiang, C.

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

Jiang, L.

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
[Crossref] [PubMed]

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
[Crossref] [PubMed]

Kajiwara, Y.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Kaufman, C.

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

Kaur, S.

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

Kawai, H.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Khan, M. M.

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).
[Crossref]

Khurgin, J. B.

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Kittel, C.

C. Kittel, “On the Theory of Ferromagnetic Resonance Absorption,” Phys. Rev. 73, 155 (1948).
[Crossref]

Kong, C.

Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, “Magnon induced transparency and amplification in PT-symmetric cavity magnon system,” Opt. Express 26, 20248 (2018).
[Crossref] [PubMed]

Kostylev, M.

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Kostylev, N.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

N. Kostylev, M. Goryachev, and M. E. Tobar, “Superstrong coupling of a microwave cavity to yttrium iron garnet magnons,” Appl. Phys. Lett. 108, 062402 (2016).
[Crossref]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[Crossref]

Ku, P. C.

Ku, P.-C.

Kuzyk, M. C.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” Phys. Rev. Lett. 121, 203601 (2018).
[Crossref] [PubMed]

Li, T.

Li, T. F.

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Li, T.-F.

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

Li, X.

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

Liertzer, M.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Liu, B. Z.

B. Z. Liu and J. H. Peng, Nonlinear Dynamics (Higher Education Press, 2004).

Liu, Z. X.

Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Liu, Z.-X.

Lotze, J.

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Lukin, M. D.

M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[Crossref] [PubMed]

Luo, X. Q.

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Luo, X.-Q.

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

Maekawa, S.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Marquardt, F.

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Marx, A.

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Milburn, G.

D. Walls and G. Milburn, Quantum Optics (Springer, New York, 2008).
[Crossref]

Monifi, F.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Nakamura, Y.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

Noguchi, A.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Nori, F.

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Ohe, J.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Ota, T.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Palinginis, P.

Peng, B.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Peng, J. H.

B. Z. Liu and J. H. Peng, Nonlinear Dynamics (Higher Education Press, 2004).

Rao, J. W.

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Rotter, S.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Saif, F.

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).
[Crossref]

Saitoh, E.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Sedgwick, F.

Shi, Z. M.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Tabuchi, Y.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

Takahashi, S.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Tang, H. X.

X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
[Crossref] [PubMed]

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
[Crossref] [PubMed]

Tian, L.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

Tobar, M. E.

N. Kostylev, M. Goryachev, and M. E. Tobar, “Superstrong coupling of a microwave cavity to yttrium iron garnet magnons,” Appl. Phys. Lett. 108, 062402 (2016).
[Crossref]

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Tucker, R. S.

Uchida, K.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Umezawa, H.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Usami, K.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

Vudyasetu, P. K.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Walls, D.

D. Walls and G. Milburn, Quantum Optics (Springer, New York, 2008).
[Crossref]

Wang, B.

Wang, H.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref] [PubMed]

Wang, S.-P.

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

Wang, X. M.

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Wang, Y.-P.

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Wong, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]

Wu, W.

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Wu, Y.

Z.-X. Liu, C. You, B. Wang, H. Xiong, and Y. Wu, “Phase-mediated magnon chaos-order transition in cavity optomagnonics,” Opt. Lett. 44, 507–510 (2019).
[Crossref] [PubMed]

B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, “Magnon induced transparency and amplification in PT-symmetric cavity magnon system,” Opt. Express 26, 20248 (2018).
[Crossref] [PubMed]

H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).
[Crossref]

Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

H. Xiong, J.-H. Gan, and Y. Wu, “Kuznetsov-Ma soliton dynamics based on the mechanical effect of light,” Phys. Rev. Lett. 119, 153901 (2017).
[Crossref] [PubMed]

Xiao, J.

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Xiao, J. Q.

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Xiong, H.

Z.-X. Liu, C. You, B. Wang, H. Xiong, and Y. Wu, “Phase-mediated magnon chaos-order transition in cavity optomagnonics,” Opt. Lett. 44, 507–510 (2019).
[Crossref] [PubMed]

B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, “Magnon induced transparency and amplification in PT-symmetric cavity magnon system,” Opt. Express 26, 20248 (2018).
[Crossref] [PubMed]

H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).
[Crossref]

Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

H. Xiong, J.-H. Gan, and Y. Wu, “Kuznetsov-Ma soliton dynamics based on the mechanical effect of light,” Phys. Rev. Lett. 119, 153901 (2017).
[Crossref] [PubMed]

Xiong, W.

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

Yamazaki, R.

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

Yan, P.

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

Yang, L.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Yang, Y.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

Yao, B. M.

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

Yilmaz, H.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

You, C.

You, J. Q.

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Yu, H.

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

Zhang, D.

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Zhang, G. Q.

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

Zhang, G.-Q.

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

Zhang, X.

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
[Crossref] [PubMed]

Zhang, X.-F.

X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
[Crossref] [PubMed]

Zhang, Z.

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

Zhong, W.-X

Zhu, N.

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

Zhu, S. Y.

J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” Phys. Rev. Lett. 121, 203601 (2018).
[Crossref] [PubMed]

Zoller, P.

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2004).

Zollitsch, C. W.

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

Zou, C. L.

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

Zou, C.-L.

X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
[Crossref] [PubMed]

X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

S. Kaur, B. M. Yao, J. W. Rao, Y. S. Gui, and C.-M. Hu, “Voltage control of cavity magnon polariton,” Appl. Phys. Lett. 109, 032404 (2016).
[Crossref]

Z. X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

N. Kostylev, M. Goryachev, and M. E. Tobar, “Superstrong coupling of a microwave cavity to yttrium iron garnet magnons,” Appl. Phys. Lett. 108, 062402 (2016).
[Crossref]

Appl. Phys. Rev. (1)

H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Comm. (1)

X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “Magnon dark modes and gradient memory,” Nat. Comm. 6, 8914 (2015).
[Crossref]

Nat. Mater. (1)

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater. 9, 894 (2010).
[Crossref] [PubMed]

Nat. Photon. (2)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[Crossref]

Nature (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

npj Quantum Information (1)

D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Information 1, 15014 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17, 19–23 (2006).
[Crossref]

Phys. Rev. (1)

C. Kittel, “On the Theory of Ferromagnetic Resonance Absorption,” Phys. Rev. 73, 155 (1948).
[Crossref]

Phys. Rev. A (4)

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).
[Crossref]

Phys. Rev. Appl. (1)

M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
[Crossref]

Phys. Rev. B (3)

Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, “Exchange magnon-polaritons in microwave cavities,” Phys. Rev. B 91, 094423 (2015).
[Crossref]

Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, “Magnon Kerr effect in a strongly coupled cavity-magnon system,” Phys. Rev. B 94, 224410 (2016).
[Crossref]

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93, 144420 (2016).
[Crossref]

Phys. Rev. Lett. (14)

Y.-P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, “Bistability of Cavity Magnon-Polaritons,” Phys. Rev. Lett. 120, 057202 (2018).
[Crossref]

M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
[Crossref] [PubMed]

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-Light Fourier Transform Interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” Phys. Rev. Lett. 121, 203601 (2018).
[Crossref] [PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref] [PubMed]

H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
[Crossref] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

L. Bai, M. Harder, P. Hyde, Z. Zhang, C. M. Hu, Y. P. Chen, and J. Q. Xiao, “Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton,” Phys. Rev. Lett. 118, 217201 (2017).
[Crossref] [PubMed]

L. H. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, “Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems,” Phys. Rev. Lett. 114, 227201 (2015).
[Crossref] [PubMed]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit,” Phys. Rev. Lett. 113, 083603 (2014).
[Crossref] [PubMed]

X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Strongly Coupled Magnons and Cavity Microwave Photons,” Phys. Rev. Lett. 113, 156401 (2014).
[Crossref] [PubMed]

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]

H. Xiong, J.-H. Gan, and Y. Wu, “Kuznetsov-Ma soliton dynamics based on the mechanical effect of light,” Phys. Rev. Lett. 119, 153901 (2017).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Sci. Adv. (1)

X.-F. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
[Crossref] [PubMed]

Science (3)

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Other (3)

D. Walls and G. Milburn, Quantum Optics (Springer, New York, 2008).
[Crossref]

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2004).

B. Z. Liu and J. H. Peng, Nonlinear Dynamics (Higher Education Press, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of a cavity magnetomechanical system, consisting of a three-dimensional copper cavity and a YIG sphere which is glued to a silica fiber. (b) Schematic of the linearly coupled photon (a) and magnon (m), and the nonlinearly coupled magnon and phonon (b). κa, κm, κb are the dissipation rates of microwave cavity, magnon and phonon modes, respectively, where κa includes an external loss rate κ and an intrinsic loss rate κ0 [22].
Fig. 2
Fig. 2 Parameter regime of stability in the cavity magnetomechanical system with different external bias magnetic fields and photon-magnon coupling strengths. Here, we use a set of experimentally feasible values, i.e., ωa/2π = 7.86GHz, ωb/2π = 11.42MHz, G/2π = 4.1mHz, 2κa/2π = 3.35MHz, 2κm/2π = 1.12MHz, 2κb/2π = 300Hz [22], Pd = 10mW, Δad = 0Hz.
Fig. 3
Fig. 3 The transmission rate |tp|2 of the probe field as a function of the two-photon detuning Ω with different photon-magnon coupling strengths and the frequencies of the control field. Δmd = Δad (H = 280.7mT) and the other parameters are the same as in Fig. 2.
Fig. 4
Fig. 4 Group delay of the probe light τg (in units of ms) as a function of the photon-magnon coupling strength g and the bias magnetic field H. Ω = ωb and the other parameters are the same as in Fig. 2.
Fig. 5
Fig. 5 Group delay of the probe light τg as a function of the pump power Pd and the bias magnetic field H. In panels (a) and (b), the value of τg is in units of μs. g = ωb, Ω = ωb and the other parameters are the same as in Fig. 2.
Fig. 6
Fig. 6 Group delay of the probe light τg (in units of ms) as a function of the frequency detuning between the control field and the cavity field for different photon-magnon coupling strengths. Δmd = Δad, Ω = ωb and the other parameters are the same as in Fig. 2.
Fig. 7
Fig. 7 Group delay of the probe light τg (in units of ms) as a function of the pump power Pd for different photon-magnon coupling strengths and the frequency detunings between the control field and the cavity field. Δmd = Δad, Ω = ωb and the other parameters are the same as in Fig. 2.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

H ^ 0 = ω a a ^ a ^ + ω b b ^ b ^ + ω m m ^ m ^ + g ( a ^ + a ^ ) ( m ^ + m ^ ) + G m ^ m ^ ( b ^ + b ^ ) .
H ^ = H ^ 0 + 2 κ [ a ^ ( ε d e i ω d t + ε p e i ω p t ) + H . c . ] ,
H ^ = Δ a d a ^ a ^ + ω b b ^ b ^ + Δ m d m ^ m ^ + g ( a ^ m ^ + a ^ m ^ ) + G m ^ m ^ ( b ^ + b ^ ) + 2 κ [ a ^ ( ε d + ε p e i Ω t ) + H . c . ] ,
a ˙ = ( i Δ a d κ a ) a i g m i 2 κ ( ε d + ε p e i Ω t ) ,
b ˙ = ( i ω b κ b ) b i G m * m ,
m ˙ = ( i Δ m d κ m ) m i g a i G ( b + b * ) m .
A 0 = i g M 0 + i 2 κ ε d i Δ a d κ a ,
B 0 = i G | M 0 | 2 i ω b κ b ,
M 0 = i g A 0 i Δ m d κ m i G ( B 0 + B 0 * ) .
u ˙ ( t ) = M u ( t ) + n ( t ) .
M = ( i Δ a d κ a 0 0 0 i g 0 0 i Δ a d κ a 0 0 0 i g 0 0 i ω b κ b 0 i G M 0 * i G M 0 0 0 0 i ω b κ b i G M 0 * i G M 0 i g 0 i G M 0 i G M 0 ζ 0 0 i g i G M 0 * i G M 0 * 0 ζ * ) ,
δ a = A + e i Ω t + A e i Ω t ,
δ b = B + e i Ω t + B e i Ω t ,
δ m = M + e i Ω t + M e i Ω t .
A + = ( i g M + + i 2 κ ε p ) i ( Δ a d Ω ) κ a ,
M + = 2 κ h 1 ( Ω ) ε p g [ h 2 ( Ω ) h 2 * ( Ω ) | M 0 | 4 1 + h 1 * ( Ω ) + | M 0 | 2 h 2 * ( Ω ) + h 3 * ( Ω ) β ] ,
h 1 ( Ω ) = g 2 [ i ( Δ a d Ω ) + κ a ] [ i ( Δ m d Ω ) + κ m ] ,
h 2 ( Ω ) = 2 i G 2 ω b [ i ( ω b Ω ) + κ b ] [ i ( ω b + Ω ) κ b ] [ i ( Δ m d Ω ) + κ m ] ,
h 3 ( Ω ) = i G ( B 0 + B 0 * ) i ( Δ m d Ω ) + κ m ,
β = 1 + h 1 ( Ω ) + | M 0 | 2 h 2 ( Ω ) + h 3 ( Ω ) .
a out = ε p i 2 κ A + .
| t p | 2 = | a out a in | 2 = | 1 i 2 κ A + ε p | 2 .
A + = ( m ^ + a ^ ) / 2 , A = ( m ^ a ^ ) / 2 .
H ^ 0 = ω + A ^ + A ^ + + ω A ^ A ^ + ω b b ^ b ^ + G 2 ( A ^ + A ^ + + A ^ A ^ + A ^ + A ^ + A ^ A ^ + ) ( b ^ + b ^ ) ,
ω ± i κ ± = ω a i χ ± g 2 τ 2 ,
τ g = ϕ ( ω p ) ω p = Im [ 1 t p t p ω p ] .

Metrics