Abstract

Several algorithms have been proposed to detect floating macroalgae blooms in the global ocean. However, some of them are difficult or even impossible to routinely apply by non-experts because of performing a sophisticated atmospheric correction scheme or due to the mismatch in spectral bands from one sensor to another. Here, a generic, simple and effective method, referred to as the Floating Green Tide Index (FGTI), was proposed to detect floating green macroalgae blooms (GMB). The FGTI was defined as the difference between greenness and wetness features extracted from digital number (DN) observation through Tasseled Cap Transformation analysis, providing the advantage of bypassing the atmospheric correction procedure. Through cross-index and cross-sensor comparisons, the FGTI showed similar performance to the existing VB-FAH (Virtual-Baseline Floating macroAlgae Height) and FAI (Floating Algae Index) algorithms but proved more robust than the traditional NDVI (Normalized Difference Vegetation Index) in terms of response to perturbations by environmental conditions, viewing geometry, sun glint, and thin cloud contamination. Given the requirement for spectral bands in the current and planned satellite sensors, the FGTI design can easily be extended to any satellite sensor, and therefore provide an excellent data resource for studying GMB in any part of the global ocean.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images

Zhongfeng Qiu, Zhaoxin Li, Muhammad Bilal, Shengqiang Wang, Deyong Sun, and Yanlong Chen
Opt. Express 26(21) 26810-26829 (2018)

Uncertainty in the optical remote estimation of the biomass of Ulva prolifera macroalgae using MODIS imagery in the Yellow Sea

Ting Lu, Yingcheng Lu, Lianbo Hu, Junnan Jiao, Minwei Zhang, and Yongxue Liu
Opt. Express 27(13) 18620-18627 (2019)

Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf

Jun Zhao, Marouane Temimi, Hosni Ghedira, and Chuanmin Hu
Opt. Express 22(11) 13755-13772 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Shi and M. Wang, “Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008,” J. Geophys. Res. 114(C12), C12010 (2009).
    [Crossref]
  2. M. Wang and C. Hu, “Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations,” Remote Sens. Environ. 183, 350–367 (2016).
    [Crossref]
  3. B. E. Lapointe, J. M. Burkholder, and K. L. Van Alstyne, “Harmful Macroalgal Blooms in a Changing World: Causes, Impacts, and Management,” Harmful Algal Blooms: A Compendium Desk Reference, (John Wiley & Sons, 2018), pp: 515–560.
  4. D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
    [Crossref] [PubMed]
  5. J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
    [Crossref]
  6. M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
    [Crossref]
  7. Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
    [Crossref] [PubMed]
  8. Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
    [Crossref]
  9. C. Hu and M. X. He, “Origin and offshore extent of floating algae in Olympic sailing area,” Eos (Wash. D.C.) 89(33), 302–303 (2008).
    [Crossref]
  10. D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
    [Crossref] [PubMed]
  11. Y. Xiao, J. Zhang, and T. Cui, “High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China,” Int. J. Remote Sens. 38(6), 1626–1641 (2017).
    [Crossref]
  12. X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in the Yellow Sea, China,” Mar. Environ. Res. 119, 189–196 (2016).
    [Crossref] [PubMed]
  13. I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
    [Crossref]
  14. R. H. Charlier, P. Morand, C. W. Finkl, and A. Thys, “Green tides on the Brittany coasts,” in US/EU Baltic International Symposium, (IEEE, 2006), pp: 1–13.
  15. H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
    [Crossref]
  16. Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
    [Crossref]
  17. IOCCG, “Phytoplankton functional types from Space,” in Reports of International Ocean-Colour Coordinating Group, S. Sathyendranath, ed. (IOCCG, 2014), pp. 1–156.
  18. H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
    [Crossref] [PubMed]
  19. T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
    [Crossref]
  20. Y. Qiu and J. Lu, “Advances in the monitoring of Enteromorpha prolifera using remote sensing,” Acta Ecol. Sin. 35(15), 4977–4985 (2015).
  21. Y. B. Son, J.-E. Min, and J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47(3), 359–375 (2012).
    [Crossref]
  22. C. Hu, “A novel ocean color index to detect floating algae in the global oceans,” Remote Sens. Environ. 113(10), 2118–2129 (2009).
    [Crossref]
  23. Z. Qiu, Z. Li, M. Bilal, S. Wang, D. Sun, and Y. Chen, “Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images,” Opt. Express 26(21), 26810–26829 (2018).
    [Crossref] [PubMed]
  24. Q. Xu, H. Zhang, and Y. Cheng, “Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods,” Front. Earth Sci. 10(2), 378–388 (2016).
    [Crossref]
  25. J. W. Rouse Jr, R. Haas, J. Schell, and D. Deering, “Monitoring vegetation systems in the Great Plains with ERTS,” 309–317 (1974).
  26. A. Huete, C. Justice, and W. Van Leeuwen, “MODIS vegetation index (MOD13),” Algorithm theoretical basis document 3, 213 (1999).
  27. A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors,” Remote Sens. Environ. 81(1), 1–18 (2002).
    [Crossref]
  28. K. Yu and C. Hu, “Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data,” J. Appl. Remote Sens. 7(1), 073589 (2013).
    [Crossref]
  29. L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
    [Crossref] [PubMed]
  30. Q. Xing and C. Hu, “Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique,” Remote Sens. Environ. 178, 113–126 (2016).
    [Crossref]
  31. A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
    [Crossref]
  32. S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
    [Crossref]
  33. C. C. Dymond, D. J. Mladenoff, and V. C. Radeloff, “Phenological differences in Tasseled Cap indices improve deciduous forest classification,” Remote Sens. Environ. 80(3), 460–472 (2002).
    [Crossref]
  34. W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
    [Crossref] [PubMed]
  35. USGS, “Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology,” https://landsat.usgs.gov/sites/default/files/documents/L7SLCGapFilledMethod.pdf , Available online at (accessed 25 June 2018) (2004).
  36. B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
    [Crossref]
  37. T. Kutser, “The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters,” Remote Sens. Environ. 123, 334–338 (2012).
    [Crossref]
  38. R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
    [Crossref]
  39. R. J. Kauth and G. Thomas, “The tasselled cap–a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat,” in LARS Symposia, 159 (1976).
  40. M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
    [Crossref]
  41. C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
    [Crossref]
  42. M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
    [Crossref]
  43. C. Chen, P. Tang, and Z. Bian, “Tasseled cap transformation for HJ-1A/B charge coupled device images,” J. Appl. Remote Sens. 6(1), 63575 (2012).
    [Crossref]
  44. J. H. Horne, “A tasseled cap transformation for IKONOS images,” in ASPRS 2003 Annual conference proceedings, (2003)
  45. E. P. Crist and R. C. Cicone, “A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap,” IEEE Transactions on Geoscience and Remote sensing (3), 256–263 (1984).
    [Crossref]
  46. L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).
  47. R. D. Jackson, “Spectral indices in n-space,” Remote Sens. Environ. 13(5), 409–421 (1983).
    [Crossref]
  48. M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
    [Crossref]
  49. T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
    [Crossref]
  50. S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
    [Crossref]
  51. H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
    [Crossref]
  52. P. M. Mather and M. Koch, Computer processing of remotely-sensed images: an introduction (John Wiley & Sons, 2011), Chap. 6.
  53. E. P. Crist and R. C. Cicone, “Application of the tasseled cap concept to simulated thematic mapper data,” Ann Arbor 1001, 48107 (1984).
  54. L. D. Yarbrough, G. Easson, and J. S. Kuszmaul, “QuickBird 2 tasseled cap transform coefficients: a comparison of derivation methods,” Pecora 16 Global Priorities in Land Remote Sensing, 23–27 (2005).
  55. Y. Yuan, Z. Qiu, D. Sun, S. Wang, and X. Yue, “Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea,” Opt. Express 24(2), 787–801 (2016).
    [Crossref] [PubMed]
  56. R. Fletcher, “The occurrence of “green tides”—a review,” in Marine benthic vegetation (Springer, 1996), pp. 7–43.
  57. J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
    [Crossref] [PubMed]
  58. M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
    [Crossref] [PubMed]
  59. T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
    [Crossref]
  60. S. Jin and S. A. Sader, “Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances,” Remote Sens. Environ. 94(3), 364–372 (2005).
    [Crossref]

2018 (3)

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Z. Qiu, Z. Li, M. Bilal, S. Wang, D. Sun, and Y. Chen, “Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images,” Opt. Express 26(21), 26810–26829 (2018).
[Crossref] [PubMed]

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

2017 (3)

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
[Crossref]

Y. Xiao, J. Zhang, and T. Cui, “High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China,” Int. J. Remote Sens. 38(6), 1626–1641 (2017).
[Crossref]

2016 (7)

X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in the Yellow Sea, China,” Mar. Environ. Res. 119, 189–196 (2016).
[Crossref] [PubMed]

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

M. Wang and C. Hu, “Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations,” Remote Sens. Environ. 183, 350–367 (2016).
[Crossref]

Q. Xu, H. Zhang, and Y. Cheng, “Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods,” Front. Earth Sci. 10(2), 378–388 (2016).
[Crossref]

L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
[Crossref] [PubMed]

Q. Xing and C. Hu, “Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique,” Remote Sens. Environ. 178, 113–126 (2016).
[Crossref]

Y. Yuan, Z. Qiu, D. Sun, S. Wang, and X. Yue, “Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea,” Opt. Express 24(2), 787–801 (2016).
[Crossref] [PubMed]

2015 (3)

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Y. Qiu and J. Lu, “Advances in the monitoring of Enteromorpha prolifera using remote sensing,” Acta Ecol. Sin. 35(15), 4977–4985 (2015).

2014 (3)

H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
[Crossref] [PubMed]

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
[Crossref]

2013 (3)

R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
[Crossref]

K. Yu and C. Hu, “Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data,” J. Appl. Remote Sens. 7(1), 073589 (2013).
[Crossref]

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
[Crossref]

2012 (4)

C. Chen, P. Tang, and Z. Bian, “Tasseled cap transformation for HJ-1A/B charge coupled device images,” J. Appl. Remote Sens. 6(1), 63575 (2012).
[Crossref]

T. Kutser, “The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters,” Remote Sens. Environ. 123, 334–338 (2012).
[Crossref]

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Y. B. Son, J.-E. Min, and J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47(3), 359–375 (2012).
[Crossref]

2009 (6)

C. Hu, “A novel ocean color index to detect floating algae in the global oceans,” Remote Sens. Environ. 113(10), 2118–2129 (2009).
[Crossref]

W. Shi and M. Wang, “Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008,” J. Geophys. Res. 114(C12), C12010 (2009).
[Crossref]

D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
[Crossref] [PubMed]

B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[Crossref]

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

2008 (2)

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

C. Hu and M. X. He, “Origin and offshore extent of floating algae in Olympic sailing area,” Eos (Wash. D.C.) 89(33), 302–303 (2008).
[Crossref]

2007 (1)

M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
[Crossref] [PubMed]

2006 (1)

J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
[Crossref]

2005 (2)

S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
[Crossref]

S. Jin and S. A. Sader, “Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances,” Remote Sens. Environ. 94(3), 364–372 (2005).
[Crossref]

2004 (1)

M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
[Crossref]

2002 (4)

C. C. Dymond, D. J. Mladenoff, and V. C. Radeloff, “Phenological differences in Tasseled Cap indices improve deciduous forest classification,” Remote Sens. Environ. 80(3), 460–472 (2002).
[Crossref]

A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors,” Remote Sens. Environ. 81(1), 1–18 (2002).
[Crossref]

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

1997 (2)

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

1983 (1)

R. D. Jackson, “Spectral indices in n-space,” Remote Sens. Environ. 13(5), 409–421 (1983).
[Crossref]

Amano, Y.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Antoine, V.

M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
[Crossref] [PubMed]

Arvanitidis, C.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Auby, I.

M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
[Crossref] [PubMed]

Bäck, S.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

Baig, M. H. A.

M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
[Crossref]

Behr, P. J.

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Bian, Z.

C. Chen, P. Tang, and Z. Bian, “Tasseled cap transformation for HJ-1A/B charge coupled device images,” J. Appl. Remote Sens. 6(1), 63575 (2012).
[Crossref]

Bilal, M.

Blight, A. J.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Blomster, J.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

Borstad, G.

J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
[Crossref]

Chang, C. P.

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

Chang, J. C.

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

Charlier, R. H.

R. H. Charlier, P. Morand, C. W. Finkl, and A. Thys, “Green tides on the Brittany coasts,” in US/EU Baltic International Symposium, (IEEE, 2006), pp: 1–13.

Chatzinikolaou, E.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Chen, C.

C. Chen, P. Tang, and Z. Bian, “Tasseled cap transformation for HJ-1A/B charge coupled device images,” J. Appl. Remote Sens. 6(1), 63575 (2012).
[Crossref]

Chen, Y.

Cheng, W. C.

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

Cheng, Y.

Q. Xu, H. Zhang, and Y. Cheng, “Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods,” Front. Earth Sci. 10(2), 378–388 (2016).
[Crossref]

Chignell, S. M.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Chong, H.

L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).

Cihlar, J.

A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors,” Remote Sens. Environ. 81(1), 1–18 (2002).
[Crossref]

Clarke, T.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Cohen, W. B.

S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
[Crossref]

Crowe, T. P.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Cui, T.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, and T. Cui, “High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China,” Int. J. Remote Sens. 38(6), 1626–1641 (2017).
[Crossref]

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Davis, C. O.

B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[Crossref]

Dymond, C. C.

C. C. Dymond, D. J. Mladenoff, and V. C. Radeloff, “Phenological differences in Tasseled Cap indices improve deciduous forest classification,” Remote Sens. Environ. 80(3), 460–472 (2002).
[Crossref]

Evangelista, P. H.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Fearns, P.

R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
[Crossref]

Fewer, D. P.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

Finkl, C. W.

R. H. Charlier, P. Morand, C. W. Finkl, and A. Thys, “Green tides on the Brittany coasts,” in US/EU Baltic International Symposium, (IEEE, 2006), pp: 1–13.

Foreman, K.

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Gao, B.

B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[Crossref]

Gao, X.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Gaohuan, L.

L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).

Garcia, R. A.

R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
[Crossref]

Goetz, A. F.

B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[Crossref]

Gower, J.

J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
[Crossref]

Guy-Haim, T.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Hamunyela, E.

M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
[Crossref]

Hauxwell, J.

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Hayashi, S.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

He, M. X.

C. Hu and M. X. He, “Origin and offshore extent of floating algae in Olympic sailing area,” Eos (Wash. D.C.) 89(33), 302–303 (2008).
[Crossref]

He, Y.

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
[Crossref] [PubMed]

Healey, S. P.

S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
[Crossref]

Hedley, J. D.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Hersh, D.

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Hiraoka, M.

M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
[Crossref]

Homer, C.

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

Hu, C.

M. Wang and C. Hu, “Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations,” Remote Sens. Environ. 183, 350–367 (2016).
[Crossref]

Q. Xing and C. Hu, “Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique,” Remote Sens. Environ. 178, 113–126 (2016).
[Crossref]

L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
[Crossref] [PubMed]

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

K. Yu and C. Hu, “Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data,” J. Appl. Remote Sens. 7(1), 073589 (2013).
[Crossref]

C. Hu, “A novel ocean color index to detect floating algae in the global oceans,” Remote Sens. Environ. 113(10), 2118–2129 (2009).
[Crossref]

C. Hu and M. X. He, “Origin and offshore extent of floating algae in Olympic sailing area,” Eos (Wash. D.C.) 89(33), 302–303 (2008).
[Crossref]

J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
[Crossref]

Huang, C.

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

Inoue, Y.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Ishii, Y.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Ishizaka, J.

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

Jackson, R. D.

R. D. Jackson, “Spectral indices in n-space,” Remote Sens. Environ. 13(5), 409–421 (1983).
[Crossref]

Jarnevich, C. S.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Jia, Y.

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Jin, S.

S. Jin and S. A. Sader, “Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances,” Remote Sens. Environ. 94(3), 364–372 (2005).
[Crossref]

Jun, Z.

L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).

Kang, Z.

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Kauer, T.

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
[Crossref]

Kawaguchi, S.

M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
[Crossref]

Kay, S.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Keesing, J. K.

R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
[Crossref]

D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
[Crossref] [PubMed]

Kiirikki, M.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

King, S.

J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
[Crossref]

Koga, T.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Kong, F.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Kotta, J.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Krankina, O. N.

S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
[Crossref]

Kumar, S.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Kutser, T.

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
[Crossref]

T. Kutser, “The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters,” Remote Sens. Environ. 123, 334–338 (2012).
[Crossref]

Lavender, S.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Lehvo, A.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

Li, J.

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

Li, L.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Li, Z.

Z. Qiu, Z. Li, M. Bilal, S. Wang, D. Sun, and Y. Chen, “Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images,” Opt. Express 26(21), 26810–26829 (2018).
[Crossref] [PubMed]

A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors,” Remote Sens. Environ. 81(1), 1–18 (2002).
[Crossref]

Liu, D.

R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
[Crossref]

D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
[Crossref] [PubMed]

Liu, Q.

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in the Yellow Sea, China,” Mar. Environ. Res. 119, 189–196 (2016).
[Crossref] [PubMed]

Lou, M.

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Lu, J.

Y. Qiu and J. Lu, “Advances in the monitoring of Enteromorpha prolifera using remote sensing,” Acta Ecol. Sin. 35(15), 4977–4985 (2015).

Lu, M.

M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
[Crossref]

Luizza, M. W.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Lyons, D. A.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Maggs, C. A.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

McClelland, J.

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Meng, J.

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Merceron, M.

M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
[Crossref] [PubMed]

Min, J.-E.

Y. B. Son, J.-E. Min, and J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47(3), 359–375 (2012).
[Crossref]

Mitchell, T.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Mladenoff, D. J.

C. C. Dymond, D. J. Mladenoff, and V. C. Radeloff, “Phenological differences in Tasseled Cap indices improve deciduous forest classification,” Remote Sens. Environ. 80(3), 460–472 (2002).
[Crossref]

Montes, M. J.

B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[Crossref]

Moran, M.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Morand, P.

M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
[Crossref] [PubMed]

R. H. Charlier, P. Morand, C. W. Finkl, and A. Thys, “Green tides on the Brittany coasts,” in US/EU Baltic International Symposium, (IEEE, 2006), pp: 1–13.

Neale, C.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Nohara, S.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Ohno, M.

M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
[Crossref]

Orav-Kotta, H.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Paavel, B.

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
[Crossref]

Pebesma, E.

M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
[Crossref]

Perrie, W.

H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
[Crossref] [PubMed]

Pinter, P.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Qi, J.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Qi, L.

L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
[Crossref] [PubMed]

Qingsheng, L.

L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).

Qiu, Y.

Y. Qiu and J. Lu, “Advances in the monitoring of Enteromorpha prolifera using remote sensing,” Acta Ecol. Sin. 35(15), 4977–4985 (2015).

Qiu, Z.

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

Z. Qiu, Z. Li, M. Bilal, S. Wang, D. Sun, and Y. Chen, “Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images,” Opt. Express 26(21), 26810–26829 (2018).
[Crossref] [PubMed]

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

Y. Yuan, Z. Qiu, D. Sun, S. Wang, and X. Yue, “Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea,” Opt. Express 24(2), 787–801 (2016).
[Crossref] [PubMed]

Queirós, A. M.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Radeloff, V. C.

C. C. Dymond, D. J. Mladenoff, and V. C. Radeloff, “Phenological differences in Tasseled Cap indices improve deciduous forest classification,” Remote Sens. Environ. 80(3), 460–472 (2002).
[Crossref]

Rilov, G.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Ryu, J.-H.

Y. B. Son, J.-E. Min, and J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47(3), 359–375 (2012).
[Crossref]

Sader, S. A.

S. Jin and S. A. Sader, “Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances,” Remote Sens. Environ. 94(3), 364–372 (2005).
[Crossref]

Shang, S.

L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
[Crossref] [PubMed]

Shen, H.

H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
[Crossref] [PubMed]

Shi, P.

D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
[Crossref] [PubMed]

Shi, W.

W. Shi and M. Wang, “Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008,” J. Geophys. Res. 114(C12), C12010 (2009).
[Crossref]

Shuai, T.

M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
[Crossref]

Somerfield, P. J.

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Son, Y. B.

Y. B. Son, J.-E. Min, and J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47(3), 359–375 (2012).
[Crossref]

Stanhope, M. J.

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

Su, Y.

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

Suhong, L.

L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).

Sun, D.

Z. Qiu, Z. Li, M. Bilal, S. Wang, D. Sun, and Y. Chen, “Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images,” Opt. Express 26(21), 26810–26829 (2018).
[Crossref] [PubMed]

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

Y. Yuan, Z. Qiu, D. Sun, S. Wang, and X. Yue, “Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea,” Opt. Express 24(2), 787–801 (2016).
[Crossref] [PubMed]

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

Sun, L.

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Sun, S.

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

Swallow, A.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Tang, D.

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Tang, P.

C. Chen, P. Tang, and Z. Bian, “Tasseled cap transformation for HJ-1A/B charge coupled device images,” J. Appl. Remote Sens. 6(1), 63575 (2012).
[Crossref]

Tang, S.

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Tatsumoto, H.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Thys, A.

R. H. Charlier, P. Morand, C. W. Finkl, and A. Thys, “Green tides on the Brittany coasts,” in US/EU Baltic International Symposium, (IEEE, 2006), pp: 1–13.

Tian, L.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Tong, Q.

M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
[Crossref]

Trishchenko, A. P.

A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors,” Remote Sens. Environ. 81(1), 1–18 (2002).
[Crossref]

Troufleau, D.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Tu, T. M.

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

Vahtmäe, E.

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
[Crossref]

Valiela, I.

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Verbesselt, J.

M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
[Crossref]

Vidal, A.

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

Wang, M.

M. Wang and C. Hu, “Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations,” Remote Sens. Environ. 183, 350–367 (2016).
[Crossref]

W. Shi and M. Wang, “Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008,” J. Geophys. Res. 114(C12), C12010 (2009).
[Crossref]

Wang, S.

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

Z. Qiu, Z. Li, M. Bilal, S. Wang, D. Sun, and Y. Chen, “Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images,” Opt. Express 26(21), 26810–26829 (2018).
[Crossref] [PubMed]

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

Y. Yuan, Z. Qiu, D. Sun, S. Wang, and X. Yue, “Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea,” Opt. Express 24(2), 787–801 (2016).
[Crossref] [PubMed]

Wang, X.

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

Wang, Z.

X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in the Yellow Sea, China,” Mar. Environ. Res. 119, 189–196 (2016).
[Crossref] [PubMed]

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

West, A. M.

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Wu, L.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Wu, M.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

Wylie, B.

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

Xiao, Y.

Y. Xiao, J. Zhang, and T. Cui, “High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China,” Int. J. Remote Sens. 38(6), 1626–1641 (2017).
[Crossref]

Xing, Q.

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
[Crossref] [PubMed]

Q. Xing and C. Hu, “Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique,” Remote Sens. Environ. 178, 113–126 (2016).
[Crossref]

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, H. Zhang, and Y. Cheng, “Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods,” Front. Earth Sci. 10(2), 378–388 (2016).
[Crossref]

Yabe, T.

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Yan, T.

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Yang, L.

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

Yoshida, G.

M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
[Crossref]

Yu, K.

K. Yu and C. Hu, “Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data,” J. Appl. Remote Sens. 7(1), 073589 (2013).
[Crossref]

Yu, R.

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Yuan, Y.

Yue, X.

Zhang, H.

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

Q. Xu, H. Zhang, and Y. Cheng, “Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods,” Front. Earth Sci. 10(2), 378–388 (2016).
[Crossref]

Zhang, J.

Y. Xiao, J. Zhang, and T. Cui, “High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China,” Int. J. Remote Sens. 38(6), 1626–1641 (2017).
[Crossref]

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Zhang, L.

M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
[Crossref]

Zhang, Q.

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Zhang, X.

X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in the Yellow Sea, China,” Mar. Environ. Res. 119, 189–196 (2016).
[Crossref] [PubMed]

Zhao, W.

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

Zhiqiang, Y.

S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
[Crossref]

Zhou, M.

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Zylstra, G.

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

Acta Ecol. Sin. (1)

Y. Qiu and J. Lu, “Advances in the monitoring of Enteromorpha prolifera using remote sensing,” Acta Ecol. Sin. 35(15), 4977–4985 (2015).

Acta Optica Sinica (1)

H. Zhang, D. Sun, J. Li, Z. Qiu, S. Wang, and Y. He, “Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data,” Acta Optica Sinica 36(6), 0601004 (2016).
[Crossref]

Am. J. Bot. (1)

J. Blomster, S. Bäck, D. P. Fewer, M. Kiirikki, A. Lehvo, C. A. Maggs, and M. J. Stanhope, “Novel morphology in Enteromorpha (Ulvophyceae) forming green tides,” Am. J. Bot. 89(11), 1756–1763 (2002).
[Crossref] [PubMed]

Biogeosciences (1)

H. Zhang, S. Wang, Z. Qiu, D. Sun, J. Ishizaka, S. Sun, and Y. He, “Phytoplankton size class in the East China Sea derived from MODIS satellite data,” Biogeosciences 15(13), 4271–4289 (2018).
[Crossref]

Eos (Wash. D.C.) (1)

C. Hu and M. X. He, “Origin and offshore extent of floating algae in Olympic sailing area,” Eos (Wash. D.C.) 89(33), 302–303 (2008).
[Crossref]

Estuar. Coast. Shelf Sci. (1)

Q. Zhang, Q. Liu, Z. Kang, R. Yu, T. Yan, and M. Zhou, “Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera,” Estuar. Coast. Shelf Sci. 163, 103–111 (2015).
[Crossref]

Front. Earth Sci. (1)

Q. Xu, H. Zhang, and Y. Cheng, “Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods,” Front. Earth Sci. 10(2), 378–388 (2016).
[Crossref]

Glob. Change Biol. (1)

D. A. Lyons, C. Arvanitidis, A. J. Blight, E. Chatzinikolaou, T. Guy-Haim, J. Kotta, H. Orav-Kotta, A. M. Queirós, G. Rilov, P. J. Somerfield, and T. P. Crowe, “Macroalgal blooms alter community structure and primary productivity in marine ecosystems,” Glob. Change Biol. 20(9), 2712–2724 (2014).
[Crossref] [PubMed]

Harmful Algae (1)

L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera blooms in the western Yellow Sea,” Harmful Algae 58, 35–44 (2016).
[Crossref] [PubMed]

Hydrobiologia (1)

M. Hiraoka, M. Ohno, S. Kawaguchi, and G. Yoshida, “Crossing test among floating Ulva thalli forminggreen tide’in Japan,” Hydrobiologia 512(1–3), 239–245 (2004).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

J. Gower, C. Hu, G. Borstad, and S. King, “Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico,” IEEE Trans. Geosci. Remote Sens. 44(12), 3619–3625 (2006).
[Crossref]

Int. J. Appl. Earth Obs. Geoinf. (1)

A. M. West, P. H. Evangelista, C. S. Jarnevich, S. Kumar, A. Swallow, M. W. Luizza, and S. M. Chignell, “Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software,” Int. J. Appl. Earth Obs. Geoinf. 59, 135–146 (2017).
[Crossref]

Int. J. Remote Sens. (3)

C. Huang, B. Wylie, L. Yang, C. Homer, and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance,” Int. J. Remote Sens. 23(8), 1741–1748 (2002).
[Crossref]

Y. Xiao, J. Zhang, and T. Cui, “High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China,” Int. J. Remote Sens. 38(6), 1626–1641 (2017).
[Crossref]

T. Cui, J. Zhang, L. Sun, Y. Jia, W. Zhao, Z. Wang, and J. Meng, “Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation,” Int. J. Remote Sens. 33(17), 5513–5527 (2012).
[Crossref]

J. Appl. Remote Sens. (2)

K. Yu and C. Hu, “Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data,” J. Appl. Remote Sens. 7(1), 073589 (2013).
[Crossref]

C. Chen, P. Tang, and Z. Bian, “Tasseled cap transformation for HJ-1A/B charge coupled device images,” J. Appl. Remote Sens. 6(1), 63575 (2012).
[Crossref]

J. Geophys. Res. (1)

W. Shi and M. Wang, “Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008,” J. Geophys. Res. 114(C12), C12010 (2009).
[Crossref]

J. Geophys. Res. Oceans (1)

R. A. Garcia, P. Fearns, J. K. Keesing, and D. Liu, “Quantification of floating macroalgae blooms using the scaled algae index,” J. Geophys. Res. Oceans 118(1), 26–42 (2013).
[Crossref]

Limnol. Oceanogr. (1)

I. Valiela, J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman, “Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences,” Limnol. Oceanogr. 42(5part2), 1105–1118 (1997).
[Crossref]

Limnology (1)

T. Yabe, Y. Ishii, Y. Amano, T. Koga, S. Hayashi, S. Nohara, and H. Tatsumoto, “Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan,” Limnology 10(3), 239–245 (2009).
[Crossref]

Mar. Environ. Res. (1)

X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in the Yellow Sea, China,” Mar. Environ. Res. 119, 189–196 (2016).
[Crossref] [PubMed]

Mar. Pollut. Bull. (3)

Q. Xing, L. Wu, L. Tian, T. Cui, L. Li, F. Kong, X. Gao, and M. Wu, “Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign,” Mar. Pollut. Bull. 133, 150–156 (2018).
[Crossref] [PubMed]

D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China,” Mar. Pollut. Bull. 58(6), 888–895 (2009).
[Crossref] [PubMed]

H. Shen, W. Perrie, Q. Liu, and Y. He, “Detection of macroalgae blooms by complex SAR imagery,” Mar. Pollut. Bull. 78(1-2), 190–195 (2014).
[Crossref] [PubMed]

Ocean Sci. J. (1)

Y. B. Son, J.-E. Min, and J.-H. Ryu, “Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data,” Ocean Sci. J. 47(3), 359–375 (2012).
[Crossref]

Opt. Express (2)

Remote Sens. (3)

Q. Xing, C. Hu, D. Tang, L. Tian, S. Tang, X. Wang, M. Lou, and X. Gao, “World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations,” Remote Sens. 7(9), 12297–12313 (2015).
[Crossref]

M. Lu, E. Hamunyela, J. Verbesselt, and E. Pebesma, “Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring,” Remote Sens. 9(10), 1025 (2017).
[Crossref]

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Remote Sens. Environ. (12)

R. D. Jackson, “Spectral indices in n-space,” Remote Sens. Environ. 13(5), 409–421 (1983).
[Crossref]

M. Moran, A. Vidal, D. Troufleau, J. Qi, T. Clarke, P. Pinter, T. Mitchell, Y. Inoue, and C. Neale, “Combining multifrequency microwave and optical data for crop management,” Remote Sens. Environ. 61(1), 96–109 (1997).
[Crossref]

T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013).
[Crossref]

M. Wang and C. Hu, “Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations,” Remote Sens. Environ. 183, 350–367 (2016).
[Crossref]

Q. Xing and C. Hu, “Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique,” Remote Sens. Environ. 178, 113–126 (2016).
[Crossref]

B. Gao, M. J. Montes, C. O. Davis, and A. F. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[Crossref]

T. Kutser, “The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters,” Remote Sens. Environ. 123, 334–338 (2012).
[Crossref]

A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors,” Remote Sens. Environ. 81(1), 1–18 (2002).
[Crossref]

S. P. Healey, W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, “Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection,” Remote Sens. Environ. 97(3), 301–310 (2005).
[Crossref]

C. C. Dymond, D. J. Mladenoff, and V. C. Radeloff, “Phenological differences in Tasseled Cap indices improve deciduous forest classification,” Remote Sens. Environ. 80(3), 460–472 (2002).
[Crossref]

C. Hu, “A novel ocean color index to detect floating algae in the global oceans,” Remote Sens. Environ. 113(10), 2118–2129 (2009).
[Crossref]

S. Jin and S. A. Sader, “Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances,” Remote Sens. Environ. 94(3), 364–372 (2005).
[Crossref]

Remote Sens. Lett. (1)

M. H. A. Baig, L. Zhang, T. Shuai, and Q. Tong, “Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance,” Remote Sens. Lett. 5(5), 423–431 (2014).
[Crossref]

Sci. Total Environ. (1)

M. Merceron, V. Antoine, I. Auby, and P. Morand, “In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks,” Sci. Total Environ. 384(1-3), 293–305 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

W. C. Cheng, J. C. Chang, C. P. Chang, Y. Su, and T. M. Tu, “A Fixed-Threshold Approach to Generate High-Resolution Vegetation Maps for IKONOS Imagery,” Sensors (Basel) 8(7), 4308–4317 (2008).
[Crossref] [PubMed]

Other (14)

USGS, “Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology,” https://landsat.usgs.gov/sites/default/files/documents/L7SLCGapFilledMethod.pdf , Available online at (accessed 25 June 2018) (2004).

J. W. Rouse Jr, R. Haas, J. Schell, and D. Deering, “Monitoring vegetation systems in the Great Plains with ERTS,” 309–317 (1974).

A. Huete, C. Justice, and W. Van Leeuwen, “MODIS vegetation index (MOD13),” Algorithm theoretical basis document 3, 213 (1999).

R. J. Kauth and G. Thomas, “The tasselled cap–a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat,” in LARS Symposia, 159 (1976).

B. E. Lapointe, J. M. Burkholder, and K. L. Van Alstyne, “Harmful Macroalgal Blooms in a Changing World: Causes, Impacts, and Management,” Harmful Algal Blooms: A Compendium Desk Reference, (John Wiley & Sons, 2018), pp: 515–560.

P. M. Mather and M. Koch, Computer processing of remotely-sensed images: an introduction (John Wiley & Sons, 2011), Chap. 6.

E. P. Crist and R. C. Cicone, “Application of the tasseled cap concept to simulated thematic mapper data,” Ann Arbor 1001, 48107 (1984).

L. D. Yarbrough, G. Easson, and J. S. Kuszmaul, “QuickBird 2 tasseled cap transform coefficients: a comparison of derivation methods,” Pecora 16 Global Priorities in Land Remote Sensing, 23–27 (2005).

J. H. Horne, “A tasseled cap transformation for IKONOS images,” in ASPRS 2003 Annual conference proceedings, (2003)

E. P. Crist and R. C. Cicone, “A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap,” IEEE Transactions on Geoscience and Remote sensing (3), 256–263 (1984).
[Crossref]

L. Qingsheng, L. Gaohuan, H. Chong, L. Suhong, and Z. Jun, “A tasseled cap transformation for Landsat 8 OLI TOA reflectance images,” in 2014 IEEE International, 541–544 (2014).

R. Fletcher, “The occurrence of “green tides”—a review,” in Marine benthic vegetation (Springer, 1996), pp. 7–43.

IOCCG, “Phytoplankton functional types from Space,” in Reports of International Ocean-Colour Coordinating Group, S. Sathyendranath, ed. (IOCCG, 2014), pp. 1–156.

R. H. Charlier, P. Morand, C. W. Finkl, and A. Thys, “Green tides on the Brittany coasts,” in US/EU Baltic International Symposium, (IEEE, 2006), pp: 1–13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Location of the study area showing the YS, and the boxes with different colors show the coverage of different satellite images used in this study, respectively (a). A sample of the satellite Red-Green-Blue “true-color” composite image recorded by GF-1/WFV (8 July 2015) acquired over the Qingdao coastal waters, showing floating green macroalgae bloom (b). A photo of the Ulva prolifera macroalgae mat was taken 14 July 2016 in the Qingdao coast (c).
Fig. 2
Fig. 2 GF-1/WFV “true-color” composite image over the western YS near Shandong coast at 03:11 GMT on 8 July 2015 (a). The three small regions (700 × 700 pixels) encompassed various environmental conditions, including the turbid waters (b), relatively clear waters (c), and partially cloud-covered clear waters (d).
Fig. 3
Fig. 3 The TCT component features of floating macroalgae (circles) and seawaters (squares) from three different regions shown in Figs. 2(b)-2(d), respectively. Error bars represent one standard deviations of the means.
Fig. 4
Fig. 4 The FGTI images (a-c) in three small regions presented in Figs. 2(b)-2(d). Histogram results in the FGTI distribution (d) for the macroalgae and water pixels analyzed in Fig. 3, and their mean and standard deviation of FGTI values (e).
Fig. 5
Fig. 5 The GF-1/WFV RGB “true-color” composite images in three small regions (a). Their FGTI results were derived from DN signal (b); and their VB-FAH results were derived from Ref signal (c). Comparison of mapping GMB detected by the FGTI and VB-FAH indices.
Fig. 6
Fig. 6 Relationship between FGTI and VB-FAH for Region 1 (a), Region 2 (b), Region 3 (c).
Fig. 7
Fig. 7 The satellite “true-color” RGB composite images by GF-1/WFV (a) and Landsat-7/ETM + (d), respectively, both acquired on 8 July 2015. Their locations are shown by the red boxes in the middle-right figure. The GF-1 FGTI (b), Landsat-7 FGTI (e), and Landsat-7 FAI (h) images with floating macroalgae shown as bright pixels. The mapping GMB results were detected by the GF-1 FGTI (c), Landsat-7 FGTI (f), and Landsat-7 FAI (l), respectively.
Fig. 8
Fig. 8 The relationship between FGTI and FAI shown in Figs. 7(e) and 7(h) over the Landsat-7/ETM + image. The black line is the linear-fitting line.
Fig. 9
Fig. 9 The GF-1/WFV “true-color” RGB composite image, and two yellow lines are the artificial transect lines in the zonal and meridional directions (a). The relationships between FGTI and VB-FAH and NDVI for all pixels along the transect lines (b). Variations of FGTI and VB-FAH for all pixels along the zonal line (c) and meridional line (d). Variations of FGTI and NDVI for all pixels along the zonal (e) and meridional lines (f). The spikes in (c-f) show the presence of floating macroalgae.
Fig. 10
Fig. 10 GF-1/WFV Pseudo-RGB composite image acquired on 13 June 2016, showing macroalgae in red color (a). A testing area with high dynamic range of glint and macroalgae (b). Surface reflectance of macroalgae and seawater with high sun glint (SW #1) and low sun glint (SW #2) (c), corresponding to the annotations in (b), respectively. The FGTI image for a small region (d). The cloud pixels were masked as shown in white color.
Fig. 11
Fig. 11 Variations of FGTI and VB-FAH (a) and NDVI (c) along the transect line shown in Fig. 10(a). The relationship between FGTI and VB-FAH (b) and NDVI (d) along the same transect line. The spikes in (a and c) show the presence of floating macroalgae.
Fig. 12
Fig. 12 The satellite images of HJ-1B/CCD (top) and GOCI (bottom) (a), whose locations and overpass times were shown in Fig. 1(a). Two regions with floating macroalgae (b) were selected from (a). The FGTI pattern (c) and the detected GMB results (d) from individual satellite sensors.

Tables (2)

Tables Icon

Table 1 The wavelength settings (μm) of the satellite sensors used in the current study. Here, B, G, R, NIR, and SWIR are blue, green, red, near infrared, and short-wave infrared bands, respectively. “-” means no band or no Visible-NIR-SWIR band. “*” means the GOCI wavebands used for the TCT analysis.

Tables Icon

Table 2 Comparison between the GMB coverage [Fig. 5(d)] detected by the FGTI and VB-FAH indices.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N D V I = ( R n i r R r e d ) / ( R n i r + R r e d ) ,
V B F A H = ( R n i r R g r e e n ) + ( R g r e e n R r e d ) × ( λ n i r λ g r e e n ) / ( 2 λ n i r λ r e d λ g r e e n ) ,
F A I = ( R n i r R r e d ) + ( R r e d R s w i r ) × ( λ n i r λ r e d ) / ( λ s w i r λ r e d ) ,
A a = N A × S R 2 ,
Y = c X + a ,
( 0.326 0.509 0 .560 0 .567 -0 .311 -0 .356 -0 .325 0 .819 - 0.612 -0 .312 0 .722 -0 .081 -0 .650 0 .719 -0 .243 -0 .031 ) ( D N b l u e D N g r e e n D N r e d D N n i r ) = ( T C B T C G T C W T C Y ) ,
F G T I = T C G T C W ,

Metrics