Abstract

Transverse mode competition and instabilities in high-power fiber oscillators have been studied experimentally by monitoring the dynamic power exchanges and characteristic frequencies of the transmitted fundamental mode (FM) and scattered high-order modes (HOMs) of the fiber laser cavity under CW and pulsed pumping. The FM and HOM power evolution indicates the presence of two competing effective laser cavities which result in rich output dynamics and full chaotic operation. The thermal and inversion related contributions to the observed instabilities have been identified by monitoring the associated characteristic instability frequencies under pulsed pumping. It is shown that in the transient regime, both inversion and thermal effects contribute successively to the observed power instabilities. Increasing the pump power leads to full chaotic response through an interplay between transverse and longitudinal mode instabilities.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Frequency resolved transverse mode instability in rod fiber amplifiers

Mette Marie Johansen, Marko Laurila, Martin D. Maack, Danny Noordegraaf, Christian Jakobsen, Thomas Tanggaard Alkeskjold, and Jesper Lægsgaard
Opt. Express 21(19) 21847-21856 (2013)

Theoretical analysis of mode instability in high-power fiber amplifiers

Kristian Rymann Hansen, Thomas Tanggaard Alkeskjold, Jes Broeng, and Jesper Lægsgaard
Opt. Express 21(2) 1944-1971 (2013)

Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers

Hans-Jürgen Otto, Fabian Stutzki, Florian Jansen, Tino Eidam, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(14) 15710-15722 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
  2. M. N. Zervas, “Power Scalability in High Power Fibre Amplifiers” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_6_1.
  3. M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).
  4. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  5. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
    [Crossref] [PubMed]
  6. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  7. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  8. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
    [Crossref] [PubMed]
  9. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  10. S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
    [Crossref] [PubMed]
  11. M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Wessels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett. 37(20), 4242–4244 (2012).
    [Crossref] [PubMed]
  12. D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
    [Crossref]
  13. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
    [Crossref]
  14. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
    [Crossref]
  15. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
    [Crossref] [PubMed]
  16. M. Kuznetsov, O. Vershinin, V. Tyrtyshnyy, and O. Antipov, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 22(24), 29714–29725 (2014).
    [Crossref] [PubMed]
  17. O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
    [Crossref] [PubMed]
  18. B. G. Ward, “Modeling of transient modal instability in fiber amplifiers,” Opt. Express 21(10), 12053–12067 (2013).
    [Crossref] [PubMed]
  19. M. N. Zervas, “TMI Threshold in High Power Fiber Amplifiers,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (Online) (Optical Society of America, 2016), p. SoW2H.2.
  20. M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
    [Crossref]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012), Chap. 5.
  22. G. H. M. van Tartwijk and G. P. Agrawal, “Maxwell–Bloch dynamics and modulation instabilities in fiber lasers and amplifiers,” J. Opt. Soc. Am. B 14(10), 2618–2627 (1997).
    [Crossref]
  23. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
    [Crossref]
  24. B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
    [Crossref] [PubMed]
  25. M.-A. Malleville, R. Dauliat, A. Benoît, B. Leconte, D. Darwich, R. D. Jeu, R. Jamier, K. Schuster, and P. Roy, “Experimental study of the mode instability onset threshold in high-power FA-LPF lasers,” Opt. Lett. 42(24), 5230–5233 (2017).
    [Crossref] [PubMed]
  26. B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
    [Crossref]
  27. J. Lægsgaard, “Static thermo-optic instability in double-pass fiber amplifiers,” Opt. Express 24(12), 13429–13443 (2016).
    [Crossref] [PubMed]
  28. C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier,” Proc. SPIE 10083, 100830R (2017).
    [Crossref]
  29. D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-Mode Instability in High-Gain Few-Mode Yb3+-Doped Fiber Amplifiers With a 10-μm Core Diameter With or Without Backward Reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  30. N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express 20(12), 13274–13283 (2012).
    [Crossref] [PubMed]
  31. C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), p.10691 (2018).
  32. C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
    [Crossref]
  33. A. B. Grudinin, D. N. Payne, P. W. Turner, J. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fibre arrangements for high power fibre lasers and amplifiers”, U.S. patent 6,826,335 (April 28, 2000).
  34. M. N. Zervas, A. Marshall, and J. Kim, “Effective absorption in cladding-pumped fibers,” Proc. SPIE 7914, 79141T (2011).
    [Crossref]
  35. M. N. Ozisik, Heat Conduction (J. Wiley, 1993)
  36. R. W. Boyd, Nonlinear Optics (Academic Press, 2008), Chap. 4.
  37. K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).
  38. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1959).
  39. All data supporting this study are openly available from the University of Southampton repository at: https://eprints.soton.ac.uk/426357/.

2018 (6)

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-Mode Instability in High-Gain Few-Mode Yb3+-Doped Fiber Amplifiers With a 10-μm Core Diameter With or Without Backward Reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref]

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), p.10691 (2018).

2017 (3)

M.-A. Malleville, R. Dauliat, A. Benoît, B. Leconte, D. Darwich, R. D. Jeu, R. Jamier, K. Schuster, and P. Roy, “Experimental study of the mode instability onset threshold in high-power FA-LPF lasers,” Opt. Lett. 42(24), 5230–5233 (2017).
[Crossref] [PubMed]

C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier,” Proc. SPIE 10083, 100830R (2017).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

2016 (4)

2015 (2)

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

2014 (3)

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

M. Kuznetsov, O. Vershinin, V. Tyrtyshnyy, and O. Antipov, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 22(24), 29714–29725 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (5)

2011 (3)

1997 (1)

Afzal, R.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Agrawal, G. P.

Alekseev, D.

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-Mode Instability in High-Gain Few-Mode Yb3+-Doped Fiber Amplifiers With a 10-μm Core Diameter With or Without Backward Reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
[Crossref] [PubMed]

Alkeskjold, T. T.

Antipov, O.

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Benoît, A.

Brar, K.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Broeng, J.

Burton, J.

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

Chen, J.

Courtney, S.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dajani, I.

Darab, I.

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

Darwich, D.

Dauliat, R.

de Vries, O.

Dilley, C.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dong, L.

Eberhardt, R.

Eidam, T.

Engin, D.

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

Gupta, S.

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

Haarlammert, N.

Hamedani Golshan, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hansen, K. R.

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hejaz, K.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Henrie, J.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Honea, E.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Ikoma, S.

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

Jamier, R.

Jansen, F.

Jauregui, C.

Jeu, R. D.

Karow, M.

Kashiwagi, M.

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

Kim, J.

M. N. Zervas, A. Marshall, and J. Kim, “Effective absorption in cladding-pumped fibers,” Proc. SPIE 7914, 79141T (2011).
[Crossref]

Kimpel, F.

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

Kliner, A.

Kracht, D.

Kuznetsov, M.

Lægsgaard, J.

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Leconte, B.

Liem, A.

Limpert, J.

Liu, Z.

Lu, Q.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

Ma, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

Madden, T.

Malleville, M.-A.

Marshall, A.

M. N. Zervas, A. Marshall, and J. Kim, “Effective absorption in cladding-pumped fibers,” Proc. SPIE 7914, 79141T (2011).
[Crossref]

Naderi, S.

Neumann, J.

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Otto, H.-J.

Peschel, T.

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Rezaei Nasirabad, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Robin, C.

Roohforouz, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Roy, P.

Savage-Leuchs, M.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Schmidt, O.

Schreiber, T.

Schuster, K.

Shi, C.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

Shima, K.

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

Smith, A. V.

Smith, J. J.

Stihler, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), p.10691 (2018).

C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier,” Proc. SPIE 10083, 100830R (2017).
[Crossref]

Stutzki, F.

Su, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

Tabatabaei Jafari, N.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Takubo, Y.

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

Tanaka, D.

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

Tao, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

Tünnermann, A.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), p.10691 (2018).

C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier,” Proc. SPIE 10083, 100830R (2017).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express 20(12), 13274–13283 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).

Tünnermann, H.

Tyrtyshnyy, V.

Uchiyama, K.

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

van Tartwijk, G. H. M.

Vershinin, O.

Wang, X.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

Ward, B.

Ward, B. G.

Wessels, P.

Wirth, C.

Xu, X.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

Yang, B.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

Zervas, M. N.

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

M. N. Zervas, A. Marshall, and J. Kim, “Effective absorption in cladding-pumped fibers,” Proc. SPIE 7914, 79141T (2011).
[Crossref]

Zhang, H.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

Zhou, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-Mode Instability in High-Gain Few-Mode Yb3+-Doped Fiber Amplifiers With a 10-μm Core Diameter With or Without Backward Reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

J. Opt. (2)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Light Sci. Appl. (1)

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref]

Opt. Express (16)

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

J. Lægsgaard, “Static thermo-optic instability in double-pass fiber amplifiers,” Opt. Express 24(12), 13429–13443 (2016).
[Crossref] [PubMed]

N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express 20(12), 13274–13283 (2012).
[Crossref] [PubMed]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), p.10691 (2018).

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

M. Kuznetsov, O. Vershinin, V. Tyrtyshnyy, and O. Antipov, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 22(24), 29714–29725 (2014).
[Crossref] [PubMed]

O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
[Crossref] [PubMed]

B. G. Ward, “Modeling of transient modal instability in fiber amplifiers,” Opt. Express 21(10), 12053–12067 (2013).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (7)

C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier,” Proc. SPIE 10083, 100830R (2017).
[Crossref]

M. N. Zervas, A. Marshall, and J. Kim, “Effective absorption in cladding-pumped fibers,” Proc. SPIE 7914, 79141T (2011).
[Crossref]

K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, and D. Tanaka, “5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing,” Proc. SPIE 10512, 105120C (2018).

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” Proc. SPIE 9466, 94660V (2015).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, ““Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers XI: Technology, Systems, and Applications,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

Other (8)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012), Chap. 5.

M. N. Zervas, “Power Scalability in High Power Fibre Amplifiers” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_6_1.

M. N. Zervas, “TMI Threshold in High Power Fiber Amplifiers,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (Online) (Optical Society of America, 2016), p. SoW2H.2.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1959).

All data supporting this study are openly available from the University of Southampton repository at: https://eprints.soton.ac.uk/426357/.

M. N. Ozisik, Heat Conduction (J. Wiley, 1993)

R. W. Boyd, Nonlinear Optics (Academic Press, 2008), Chap. 4.

A. B. Grudinin, D. N. Payne, P. W. Turner, J. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fibre arrangements for high power fibre lasers and amplifiers”, U.S. patent 6,826,335 (April 28, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Fiber laser scheme and experimental setup.
Fig. 2
Fig. 2 Effective double-cavity fiber laser configuration; (a) possible FM/FM/FM and FM/HOM/FM closed paths in the composite SM/MM/SM fiber cavity, (b) fundamental mode cavity (FMC), (c) effective higher-order-mode cavity (HOMC).
Fig. 3
Fig. 3 CW ramp logging; in green the output power and in red the CMS photodiode reading.
Fig. 4
Fig. 4 Normalised readings versus time of PD#1 and PD#2 at average signal output power of (a) 438W, (b) 885W, (c) 1480W, and (d) 1620W.
Fig. 5
Fig. 5 Average values of the signal output power and PD#2 voltage, obtained during each step of the pump ramp, against pump power.
Fig. 6
Fig. 6 Output power (PD#1-green) and CMS (PD#2-red) readings over (a) relaxation oscillation (first 6.8μs), (b), entire pump pulse duration (0-200μs), and (c) FFT of output trace over 20-200μs period. The pump power is 486W.
Fig. 7
Fig. 7 Output power (PD#1-green) and CMS (PD#2-red) readings over (a) relaxation oscillation (first 6.8μs), (b), entire pump pulse duration (0-200μs), and (c) FFT of output trace over 20-200μs period. The pump power is 778W.
Fig. 8
Fig. 8 Output power (PD#1-green) and CMS (PD#2-red) readings over (a) relaxation oscillation (first 6.8μs), (b), entire pump pulse duration (0-200μs), and (c) FFT of output trace over 20-200μs period. The pump power is 1497W.
Fig. 9
Fig. 9 Output power (PD#1-green) and CMS (PD#2-red) readings over (a) entire pump pulse duration (0-200μs), and (b) zoomed in the 95-100μs region (dotted square) and (c) FFT of output trace over 20-200μs period. The pump power is 1730W.
Fig. 10
Fig. 10 Output power (PD#1-green) and HOM (PD#2-red) traces at pump powers of (a) 1506W, (b) 1623W, (c) 1808W and (d) 1924W.
Fig. 11
Fig. 11 Output power (PD#1-green) and CMS (PD#2-red) readings over (a),(d) relaxation oscillation (first 6.8μs), (b), (e) entire pump pulse duration (0-200μs), and (c), (f) FFT of output trace over 20-200μs period. The pump power is (a)-(c) 2303W, and (d)-(f) 3000W.
Fig. 12
Fig. 12 Pulsed measurement, synoptic. X Axis: frequency of the FFT, Y Axis: Pump Power, Z axis (orthogonal to page): modulus of the FFT in dB.
Fig. 13
Fig. 13 Inversion TMC’s frequency dependence on pump power – comparison with theory.
Fig. 14
Fig. 14 (a) Diffusion time, (b) characteristic frequency and (c) amplitude of the nth thermal component, for initial condition ΔT(r,φ,t) = ΔT0 for r<R1 and t = 0, and BC#1, (d) temperature variation of the maximum thermal component (n = 6); R1 = 8μm and R2 = 80μm.
Fig. 15
Fig. 15 (a) Diffusion time, (b) characteristic frequency of the maximum thermal component, as a function of the core radius. Initial condition ΔT(r,φ,t) = ΔT0, for r<R1 and t = 0, and BC#1 (blue line) and BC#3 (red line). Ratio R2 / R1 = 10.
Fig. 16
Fig. 16 Temperature variation of the maximum thermal component for BC1 (n = 6) and BC3 (n = 7). Initial condition ΔT(r,φ,t) = ΔT0, for r<R1 and t = 0, and BC#1 (blue line) and BC#3 (red line). R1 = 8μm and R2 = 80μm.
Fig. 17
Fig. 17 (a) Effective upper-level decay time, and (b) corresponding effective frequency as a function signal power, for different core radii. Optical-to-optical conversion efficiency = 80%, ratio R2/R1 = 10, λs = 1070nm, λp = 915nm, phosphosilicate fiber.
Fig. 18
Fig. 18 (a) Effective upper-level decay time, and (b) corresponding effective frequency as a function core radius, for different signal powers. Optical-to-optical conversion efficiency = 80%, ratio R2/R1 = 10, λs = 1070nm, λp = 915nm, phosphosilicate fiber.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dΔT dt α T 2 (ΔT)= Q T ρ 0 C 0
ΔT(r,t)=Δ T 0 n=1 A n J 0 ( β n r α )exp( β n 2 t),( t0 )
J 0 ( z n )( z n /H ) J 1 ( z n )=0;H= R 2 h 2 / κ 2
A n = 0 R 1 r J 0 ( β n r / α )d r / 0 R 2 r J 0 2 ( β n r / α )d r
d N 2 dt + N 2 τ eff inv = N 0 τ [ σ ap σ ap + σ ep ( I p I p sat )+ σ as σ as + σ es ( I s I s sat ) ]
τ eff inv = τ 1+ I p / I p sat + I s / I s sat
N 2 (t)= N 2 ss ( I s2 ; I p )+[ N 2 ss ( I s1 ; I p ) N 2 ss ( I s2 ; I p ) ]exp( t/ τ eff inv );(t0)
N 2 ss ( I s ; I p )= N 0 { [ σ ap σ ap + σ ep ( I p I p sat )+ σ as σ as + σ es ( I s I s sat ) ]/ ( 1+ I p I p sat + I s I s sat ) }
f eff inv = 1 τ eff inv = 1 τ ( 1+ I p I p sat + I s I s sat )

Metrics