Abstract

Phase-shifted Bragg gratings have been extensively implemented in superior in-fiber bandpass filters or wavelength selectors, although high-temperature operation remains a challenge. We propose a phase-shifted type-IIa fiber Bragg grating (PSBG-IIa), which can conduct a notch signal as narrow as 4.8 pm within the stopband. The notch’s spectrum and wavelength can be adjusted according to the flexible design of the phase-mask translation. Using the thermal resistance as well as the narrow band notch, the PSBG-IIa is implemented in a distributed Bragg reflector laser structure to demonstrate a single longitudinal mode and single polarization laser output that can stabilize robustly at 500 °C. The results demonstrate that the proposed device qualifies as a high-quality optical regulator, without compromise, in the high-temperature region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced type IIA gratings for high-temperature operation

Nathaniel Groothoff and John Canning
Opt. Lett. 29(20) 2360-2362 (2004)

Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance

Yang Ran, Fu-Rong Feng, Yi-Zhi Liang, Long Jin, and Bai-Ou Guan
Opt. Lett. 40(24) 5706-5709 (2015)

Ultra-short DBR fiber laser with high-temperature resistance using tilted fiber Bragg grating output coupler

Xuantung Pham, Jinhai Si, Tao Chen, Zhen Niu, Fengqin Huang, and Xun Hou
Opt. Express 27(26) 38532-38540 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
    [Crossref]
  2. M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett. 34(3), 334–336 (2009).
    [Crossref] [PubMed]
  3. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007).
    [Crossref] [PubMed]
  4. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  5. J. Chen, Q. Liu, X. Fan, and Z. He, “Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops,” Opt. Lett. 41(5), 1066–1069 (2016).
    [Crossref] [PubMed]
  6. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
    [Crossref] [PubMed]
  7. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  8. Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23(13), 16750–16759 (2015).
    [Crossref] [PubMed]
  9. T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
    [Crossref] [PubMed]
  10. X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30(16), 2068–2070 (2005).
    [Crossref] [PubMed]
  11. Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er³⁺-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
    [Crossref] [PubMed]
  12. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
    [Crossref] [PubMed]
  13. Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range,” Opt. Express 15(2), 363–370 (2007).
    [Crossref] [PubMed]
  14. B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
    [Crossref] [PubMed]
  15. R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
    [Crossref] [PubMed]
  16. Y. Ran, F. R. Feng, Y. Z. Liang, L. Jin, and B. O. Guan, “Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance,” Opt. Lett. 40(24), 5706–5709 (2015).
    [Crossref] [PubMed]
  17. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
    [Crossref]
  18. I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
    [Crossref]
  19. Y. Ran, L. Jin, S. Gao, L. P. Sun, Y. Y. Huang, J. Li, and B. O. Guan, “Type IIa Bragg gratings formed in microfibers,” Opt. Lett. 40(16), 3802–3805 (2015).
    [Crossref] [PubMed]
  20. F. R. Feng, Y. Ran, Y. Z. Liang, S. Gao, Y. H. Feng, L. Jin, and B. O. Guan, “Thermally triggered fiber lasers based on secondary-type-In Bragg gratings,” Opt. Lett. 41(11), 2470–2473 (2016).
    [Crossref] [PubMed]
  21. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
    [Crossref]
  22. N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
    [Crossref]

2018 (1)

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

2016 (2)

2015 (3)

2013 (2)

2011 (1)

2009 (1)

2008 (3)

2007 (2)

2006 (1)

2005 (1)

2003 (1)

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

2000 (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

1999 (1)

1997 (1)

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

1994 (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Asghari, M. H.

Azaña, J.

Bennion, I.

Berger, N. K.

Canning, J.

Chang, J.

Chen, D.

Chen, J.

Chen, K. P.

Chen, R.

Chen, S.

Chen, T.

Chen, X.

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Cochet, F.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

Cook, K.

Deng, Z.

Dong, L.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

Fan, X.

Feng, F. R.

Feng, Y. H.

Fischer, B.

Friebele, E. J.

Galzerano, G.

Gao, L.

Gao, S.

Gatti, D.

Grattan, K. T.

Guan, B. O.

Haller, F.

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

Han, M.

He, Z.

Hu, L.

Huang, Y. Y.

Huang, Y.-Y.

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Ianno, N.

Janner, D.

Jin, L.

Khrushchev, I.

Kulishov, M.

Ky, N. H.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

Lai, Y.

Laporta, P.

LeBlanc, M.

Levit, B.

Li, J.

Li, M.

Liang, L. L.

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Liang, Y. Z.

Limberger, H. G.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

Liu, G.

Liu, Q.

Liu, T.

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er³⁺-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref] [PubMed]

Longhi, S.

Lv, G.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Martinez, A.

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Ni, J.

Ntziachristos, V.

Peng, G.

Plant, D. V.

Qi, H.

Qi, Y.

Qiu, Y.

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Ran, Y.

Razansky, D.

Riant, I.

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

Rosenthal, A.

Salathé, R. P.

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

Shen, Y.

Song, Z.

Sun, L. P.

Sun, L.-P.

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Sun, T.

Sun, Z.

Tam, H. Y.

Tsai, T. E.

Vohra, S. T.

Wang, C.

Wang, H. J.

Wang, P.

Wang, Q.

Wu, B.

Xiao, P.

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Yan, A.

Yao, J.

Zhang, Q.

Zhang, Y.

Zhao, W.

Zhao, Y.

Biosens. Bioelectron. (1)

T. Liu, L. L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B. O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (2)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

J. Lightwave Technol. (1)

I. Riant and F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[Crossref]

Laser Photonics Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photonics Rev. 2(4), 275–289 (2008).
[Crossref]

Opt. Commun. (1)

N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIa fiber gratings,” Opt. Commun. 225(4-6), 313–318 (2003).
[Crossref]

Opt. Express (6)

Opt. Lett. (10)

J. Chen, Q. Liu, X. Fan, and Z. He, “Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops,” Opt. Lett. 41(5), 1066–1069 (2016).
[Crossref] [PubMed]

M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett. 34(3), 334–336 (2009).
[Crossref] [PubMed]

X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30(16), 2068–2070 (2005).
[Crossref] [PubMed]

R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
[Crossref] [PubMed]

Y. Ran, F. R. Feng, Y. Z. Liang, L. Jin, and B. O. Guan, “Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance,” Opt. Lett. 40(24), 5706–5709 (2015).
[Crossref] [PubMed]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
[Crossref] [PubMed]

Y. Ran, L. Jin, S. Gao, L. P. Sun, Y. Y. Huang, J. Li, and B. O. Guan, “Type IIa Bragg gratings formed in microfibers,” Opt. Lett. 40(16), 3802–3805 (2015).
[Crossref] [PubMed]

F. R. Feng, Y. Ran, Y. Z. Liang, S. Gao, Y. H. Feng, L. Jin, and B. O. Guan, “Thermally triggered fiber lasers based on secondary-type-In Bragg gratings,” Opt. Lett. 41(11), 2470–2473 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Step 1: Type-IIa fiber Bragg grating: (a) fabrication diagram; (b) spectra of transmission and reflection; Step 2: PSBG-IIa: (c) fabrication diagram; (d) spectra of transmission and reflection.
Fig. 2
Fig. 2 (a) Transmission spectra of PSBG-IIa recorded by high-resolution OSA. Inset: phase-shifted notch partly extracted from entire spectrum (“T” and “λ” are abbreviations for “transmission” and “wavelength”, respectively; the same as below); (b) PSBG-IIas spectra with various phase-shift degrees. L represents the PM displacement in step 2.
Fig. 3
Fig. 3 (a) Temperature response of notch signal. Inset: Transmission spectra of PSBG-IIa at various temperatures; (b) strain response of the notch signal. Inset: Spectra recorded at various strains by high-resolution OSA; (c) spectra recorded at various polarization states of input light source.
Fig. 4
Fig. 4 Experimental setup of DBR fiber laser, consisting of two type-IIa Bragg reflectors as well as a type-IIa phase-shifted Bragg grating filter.
Fig. 5
Fig. 5 Output spectrum of DBR fiber laser: (a) without and (b) with PSBG-IIa in laser cavity.
Fig. 6
Fig. 6 (a) Lasing wavelength in response to temperature variation. Inset: DBR laser output spectrum at various temperatures; (b) long-term stability of laser wavelength and output power at 500 °C; Inset: the spectrum recorded by the high-resolution OSA at 500 °C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 n L ,
P E R = 10 × log ( P m a x P m i n ) ,

Metrics