Abstract

We have fabricated compact optical modulators consisting of a Si waveguide with a VO2 cladding layer. These devices showed a sharp decrease in transmittance at around 60 °C, which is attributable to the metal–insulator transition of the VO2 cladding layer. By systematically varying the length of the device, we evaluated the transmission losses per unit length of the device to be 1.27 dB/µm, when the VO2 cladding layer was in the insulating (ON) state and 4.55 dB/µm when it was in the metallic (OFF) state. Furthermore, we found that the device showed an additional loss in the OFF state, which is attributable to a structural effect. As a result, an 8-µm-long device showed a large extinction ratio of more than 33 dB.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater
Opt. Express 18(11) 11192-11201 (2010)

Thermally-induced optical modulation in a vanadium dioxide-on-silicon waveguide

Vadivukkarasi Jeyaselvan, Anand Pal, P. S. Anil Kumar, and Shankar Kumar Selvaraja
OSA Continuum 3(1) 132-142 (2020)

Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide

Teng Wang, Jinwen He, Jinying Guo, Xinke Wang, Shengfei Feng, Florian Kuhl, Martin Becker, Angelika Polity, Peter J. Klar, and Yan Zhang
Opt. Express 27(15) 20347-20357 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  2. J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
    [Crossref]
  3. N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
    [Crossref] [PubMed]
  4. M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
    [Crossref]
  5. E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
    [Crossref] [PubMed]
  6. B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
    [Crossref]
  7. K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
    [Crossref]
  8. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref] [PubMed]
  9. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
    [Crossref] [PubMed]
  10. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
    [Crossref] [PubMed]
  11. K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
    [Crossref] [PubMed]
  12. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
    [Crossref] [PubMed]
  13. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  14. N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
    [Crossref]
  15. Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
    [Crossref]
  16. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  17. K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
    [Crossref]
  18. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  19. J. T. Kim, “CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition,” Opt. Lett. 39(13), 3997–4000 (2014).
    [Crossref] [PubMed]
  20. L. Sánchez, S. Lechago, and P. Sanchis, “Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon,” Opt. Lett. 40(7), 1452–1455 (2015).
    [Crossref] [PubMed]
  21. K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
    [Crossref]
  22. S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
    [Crossref]
  23. I. Olivares, L. Sánchez, J. Parra, R. Larrea, A. Griol, M. Menghini, P. Homm, L. W. Jang, B. van Bilzen, J. W. Seo, J. P. Locquet, and P. Sanchis, “Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters,” Opt. Express 26(10), 12387–12395 (2018).
    [Crossref] [PubMed]
  24. R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
    [Crossref]
  25. T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
    [Crossref] [PubMed]
  26. Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26(8), 10400–10407 (2018).
    [Crossref] [PubMed]
  27. C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
    [Crossref] [PubMed]
  28. J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
    [Crossref]
  29. P. Schilbe, “Raman scattering in VO2,” Phys. B (Amsterdam, Neth.)  316–317, 600–602 (2002).
  30. G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
    [Crossref]

2018 (3)

2017 (1)

2016 (1)

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

2015 (6)

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref] [PubMed]

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
[Crossref] [PubMed]

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

L. Sánchez, S. Lechago, and P. Sanchis, “Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon,” Opt. Lett. 40(7), 1452–1455 (2015).
[Crossref] [PubMed]

2014 (2)

J. T. Kim, “CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition,” Opt. Lett. 39(13), 3997–4000 (2014).
[Crossref] [PubMed]

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

2013 (3)

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
[Crossref]

2012 (3)

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

2007 (1)

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

2003 (1)

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

2002 (2)

P. Schilbe, “Raman scattering in VO2,” Phys. B (Amsterdam, Neth.)  316–317, 600–602 (2002).

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

1971 (1)

J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Agrawal, A.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Ahn, S.-E.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Alain, D.

Ang, L. K.

K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
[Crossref]

Atsumi, Y.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26(8), 10400–10407 (2018).
[Crossref] [PubMed]

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

Atwater, H. A.

Aziz, A.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Bai, P.

K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
[Crossref]

Briggs, R. M.

Cavalleri, A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Cha, Y.-K.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Chen, C.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Chen, M.

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Chen, S.

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Chu, H. S.

K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
[Crossref]

Dai, J.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Datta, S.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Engel-Herbert, R.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Feng, F.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Feng, J.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Goodenough, J. B.

J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Griol, A.

Gu, T.

Guo, W.

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

Gupta, S. K.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Haglund, R. F.

Hallman, K. A.

Homm, P.

Hu, H.

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

Hu, J.

Ikuma, Y.

Jang, L. W.

Jeong, J.

Ji, H.

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

Joushaghani, A.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, R.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Kamei, T.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Kang, B.-S.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Kawashima, H.

Ke, C.

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Kieffer, J. C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kim, D.-C.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Kim, J. T.

Kim, J.-S.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Kintaka, K.

Koester, S. J.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Kolmakov, A.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Kuwahara, M.

Lai, J.

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Larrea, R.

Lechago, S.

Lee, C. B.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Lee, E.-H.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Lee, M.-J.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Li, H.

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

Li, J.

Li, M.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Lilach, Y.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Locquet, J. P.

Ma, H.

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Manako, S.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Menghini, M.

Miller, K. J.

Miura, N.

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
[Crossref] [PubMed]

Miyazaki, K.

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

Miyazaki, T.

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

Mori, M.

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Natelson, D.

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

Nevidomskyy, A. H.

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

Okano, M.

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

Olivares, I.

Omoda, E.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26(8), 10400–10407 (2018).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Ooi, K. J. A.

K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
[Crossref]

Paik, H.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Paradis, S.

Park, B.-H.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Park, Y.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Parra, J.

Peng, L.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Poon, J. K. S.

Pryce, I. M.

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Sakakibara, Y.

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26(8), 10400–10407 (2018).
[Crossref] [PubMed]

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Sánchez, L.

Sanchis, P.

Sawa, A.

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

Schilbe, P.

P. Schilbe, “Raman scattering in VO2,” Phys. B (Amsterdam, Neth.)  316–317, 600–602 (2002).

Schlom, D. G.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Seo, D. H.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Seo, J. W.

Seo, S.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Shibuya, K.

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

Shoji, Y.

Shukla, N.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Si, C.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Soref, R.

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Squier, J.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stewart Aitchison, J.

Strelcov, E.

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Suh, D.-S.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Suzuki, M.

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Tajima, S.

Takei, R.

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Tanaka, D.

Tao, X.

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Thathachary, A. V.

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Toyosaki, T.

Tsuda, H.

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

van Bilzen, B.

Wado, H.

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

Wang, B.

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Wang, X.

Wei, J.

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

Weiss, S. M.

Wu, C.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Wu, Z.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Xie, Y.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Yang, J.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Yi, X.

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, I.-K.

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

Yoshida, T.

Youngblood, N.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Q.

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J.

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C. B. Lee, D. H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.-H. Park, “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory,” Adv. Mater. 19(22), 3919–3923 (2007).
[Crossref]

AIP Adv. (1)

K. Shibuya and A. Sawa, “Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition,” AIP Adv. 5(10), 107118 (2015).
[Crossref]

Appl. Phys. Lett. (2)

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Infrared Phys. Technol. (1)

B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol. 57, 8–13 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu, and Y. Xie, “Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect,” J. Am. Chem. Soc. 133(35), 13798–13801 (2011).
[Crossref] [PubMed]

J. Solid State Chem. (1)

J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys. 53(7), 071102 (2014).
[Crossref]

Y. Atsumi, T. Miyazaki, R. Takei, M. Okano, N. Miura, M. Mori, and Y. Sakakibara, “In-plane switching mode-based liquid-crystal hybrid Si wired Mach–Zehnder optical switch,” Jpn. J. Appl. Phys. 55(11), 118003 (2016).
[Crossref]

Nano Lett. (1)

E. Strelcov, Y. Lilach, and A. Kolmakov, “Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor,” Nano Lett. 9(6), 2322–2326 (2009).
[Crossref] [PubMed]

Nanophotonics (2)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

K. J. A. Ooi, P. Bai, H. S. Chu, and L. K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2(1), 13–19 (2013).
[Crossref]

Nat. Commun. (1)

N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, “A steep-slope transistor based on abrupt electronic phase transition,” Nat. Commun. 6(1), 7812 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol. 7(6), 357–362 (2012).
[Crossref]

Nat. Photonics (1)

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (7)

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
[Crossref] [PubMed]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref] [PubMed]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref] [PubMed]

I. Olivares, L. Sánchez, J. Parra, R. Larrea, A. Griol, M. Menghini, P. Homm, L. W. Jang, B. van Bilzen, J. W. Seo, J. P. Locquet, and P. Sanchis, “Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters,” Opt. Express 26(10), 12387–12395 (2018).
[Crossref] [PubMed]

T. Yoshida, S. Tajima, R. Takei, M. Mori, N. Miura, and Y. Sakakibara, “Vertical silicon waveguide coupler bent by ion implantation,” Opt. Express 23(23), 29449–29456 (2015).
[Crossref] [PubMed]

Y. Atsumi, T. Yoshida, E. Omoda, and Y. Sakakibara, “Broad-band surface optical coupler based on a SiO2-capped vertically curved silicon waveguide,” Opt. Express 26(8), 10400–10407 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, “A novel structural VO2 micro-optical switch,” Opt. Quantum Electron. 35(15), 1351–1355 (2003).
[Crossref]

Phys. B (1)

P. Schilbe, “Raman scattering in VO2,” Phys. B (Amsterdam, Neth.)  316–317, 600–602 (2002).

Phys. Rev. Lett. (2)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic illustration of the Si waveguide optical modulator with a VO2 cladding layer. The Si waveguide is 400 nm wide and 220 nm high. (b) Cross-sectional field distributions for the TM mode in the optical modulator when the VO2 layer is in its insulating phase: a thin layer of VO2 layer with a thickness of 30 nm is located on top of the Si waveguide. The transmission efficiency is shown as a function of the propagation length (c) for the insulating (ON) state of VO2 and (d) for the metallic (OFF) state of VO2. (e) Simulated TLs for the ON and OFF states and the extinction ratio as a function of the VO2 thickness. The yellow line indicates a thickness of 30 nm, which was adopted in this study.
Fig. 2
Fig. 2 (a) Cross-sectional SIM image along the Si waveguide in the device with a window length of 6 µm. The W/C/Pt layers were deposited on the device for focused-ion-beam processing. (b) Cross-sectional SIM image across the Si waveguide. (c) Cross-sectional TEM image across Si waveguide. The VO2 layer is seen only atop the Si waveguide. (d) Raman scattering spectra of VO2 measured at 25 °C (blue) and 80 °C (red). The Raman peaks for the monoclinic phase of VO2 are denoted by triangles.
Fig. 3
Fig. 3 (a) Transmittance of the 3-µm-long device as a function of the incident optical power. The measurements were conducted at 20 °C (blue) and 80 °C (red), which are below and above the TMI of VO2, respectively. (b) Temperature dependence of the transmittance of optical modulators with various device lengths. (c) Device-length dependence of the transmittance at various temperatures. The dashed lines are the results of linear fitting. (d) Temperature dependence of the TL (green) and the additional TL (blue). The TMI of bulk VO2 is also denoted by an arrow for reference.
Fig. 4
Fig. 4 Wavelength dependence of the transmittance in the temperature range 20–80 °C for the devices with the lengths of (a) 3 µm, (b) 4 µm, (c) 6 µm, and (d) 8 µm. Simulation results for ON (blue dashed) and OFF (red dashed) states are also plotted for reference.

Metrics