Abstract

Spatially offset Raman spectroscopy (SORS) enables one to distinguish chemical fingerprints of top and subsurface layers. In this paper, we apply SORS to a microfluidic two-layer system consisting of transparent liquid in a microchannel as the surface layer and microfluidic PDMS chip material as the sublayer. By using an imaging spectrograph connected to a microscope, we perform hyperspectral SORS acquisitions. Furthermore, the focus position z is translated. Thus, we combine the two methods of hyperspectral SORS and defocusing micro-SORS, which leads to an integral characterization of the layered system. The collected top and subsurface layers of Raman scattering at the optical axis (zero spatial offset) largely depends on the focus position z. However, the spatially offset Raman scattered intensity from the subsurface layer is constant for a large range of focus positions z. We claim that there is potential for internal referencing and alignment reproducibility. We demonstrate these findings experimentally in a microfluidic scenario where a 16 μm deep channel is filled with an aqueous hemoglobin solution. Our observation enables consistent concentration measurements in small-volume liquid samples.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber probe based microfluidic raman spectroscopy

P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia
Opt. Express 18(8) 7642-7649 (2010)

Inline integration of offset MMF-capillary-MMF structure as a portable and compact fiber-optic surface-enhanced Raman scattering microfluidic chip

Shiyu Li, Li Xia, Houjin Zhang, Wei Li, Ke Li, and Xin Chen
Appl. Opt. 57(36) 10548-10552 (2018)

Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media

Sanathana Konugolu Venkata Sekar, Sara Mosca, Andrea Farina, Fabrizio Martelli, Paola Taroni, Gianluca Valentini, Rinaldo Cubeddu, and Antonio Pifferi
Opt. Express 25(5) 4585-4597 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon Migration in Raman Spectroscopy,” Appl. Spectrosc. 58, 591–597 (2004).
    [Crossref] [PubMed]
  2. P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
    [Crossref]
  3. P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
    [Crossref] [PubMed]
  4. W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
    [Crossref] [PubMed]
  5. P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
    [Crossref]
  6. C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
    [Crossref]
  7. C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
    [Crossref] [PubMed]
  8. Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
    [Crossref]
  9. M. D. Keller, R. H. Wilson, M. A. Mycek, and A. Mahadevan-Jansen, “Monte carlo model of spatially offset raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64, 607–614 (2010).
    [Crossref] [PubMed]
  10. Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
    [Crossref] [PubMed]
  11. C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
    [Crossref] [PubMed]
  12. J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
    [Crossref]
  13. A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
    [Crossref] [PubMed]
  14. I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
    [Crossref] [PubMed]
  15. M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).
  16. F. Adar, “Resonance Enhancement of Raman Spectroscopy: Friend or Foe?” Spectroscopy 28, 6 (2013).
  17. J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
    [Crossref]
  18. T. G. Spiro and T.C. Streakas, “Hemoglobin: Resonance Raman spectra,” Biochim. Biophys. Acta 263, 830–833 (1972).
    [Crossref] [PubMed]
  19. D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
    [Crossref]
  20. Matlab, Version R2018a, The MathWorks Inc. (2018).

2019 (1)

M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).

2017 (2)

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

2016 (2)

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
[Crossref]

2015 (5)

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
[Crossref] [PubMed]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

2013 (2)

F. Adar, “Resonance Enhancement of Raman Spectroscopy: Friend or Foe?” Spectroscopy 28, 6 (2013).

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

2011 (1)

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

2010 (2)

M. D. Keller, R. H. Wilson, M. A. Mycek, and A. Mahadevan-Jansen, “Monte carlo model of spatially offset raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64, 607–614 (2010).
[Crossref] [PubMed]

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
[Crossref]

2005 (2)

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

2004 (1)

1972 (1)

T. G. Spiro and T.C. Streakas, “Hemoglobin: Resonance Raman spectra,” Biochim. Biophys. Acta 263, 830–833 (1972).
[Crossref] [PubMed]

Adar, F.

F. Adar, “Resonance Enhancement of Raman Spectroscopy: Friend or Foe?” Spectroscopy 28, 6 (2013).

Afseth, N. K.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

Bertasa, M.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

Bocklitz, T. W.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Botteon, A.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

Cai, D.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
[Crossref]

Cai, H.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Chao, K.

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Cho, B. K.

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

Cho, B.-K.

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Cho, Y.

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

Chrimes, A. F.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

Cialla-May, D.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Clark, I. P.

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

Cletus, B.

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

Colombo, C.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
[Crossref]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
[Crossref] [PubMed]

Conti, C.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
[Crossref]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
[Crossref] [PubMed]

Di, Z.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Draper, E.

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

Everall, N.

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon Migration in Raman Spectroscopy,” Appl. Spectrosc. 58, 591–597 (2004).
[Crossref] [PubMed]

Fredericks, P.

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

Goodship, A.

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

Hahn, T.

Heise, H. M.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
[Crossref]

Hokr, B. H.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Izake, E. L.

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

Jaatinen, E.

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

Jahn, I. J.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Jeong, Y.-S.

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

Kalantar-zadeh, K.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

Keller, M. D.

Khoshmanesh, K.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

Kim, H. M.

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

Kim, M. S.

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Kristensen, A.

M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).

Kuckuk, R.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
[Crossref]

Mahadevan-Jansen, A.

Marie, R.

M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).

Matousek, P.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
[Crossref]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
[Crossref] [PubMed]

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon Migration in Raman Spectroscopy,” Appl. Spectrosc. 58, 591–597 (2004).
[Crossref] [PubMed]

Matthiae, M.

M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).

Mitchell, A.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

Morris, M. D.

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

Mycek, M. A.

Neyer, A.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
[Crossref]

Olds, W. J.

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

Panayiotou, H.

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

Park, C. R.

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

Parker, A. W.

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon Migration in Raman Spectroscopy,” Appl. Spectrosc. 58, 591–597 (2004).
[Crossref] [PubMed]

Peng, Y.

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Popp, J.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Qin, J.

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Realini, M.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
[Crossref]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
[Crossref] [PubMed]

Schmidt, W. F.

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Scully, M. O.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Sokolov, A. V.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Song, S. W.

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

Sowoidnich, K.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

Spiro, T. G.

T. G. Spiro and T.C. Streakas, “Hemoglobin: Resonance Raman spectra,” Biochim. Biophys. Acta 263, 830–833 (1972).
[Crossref] [PubMed]

Stoddart, P. R.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

Streakas, T.C.

T. G. Spiro and T.C. Streakas, “Hemoglobin: Resonance Raman spectra,” Biochim. Biophys. Acta 263, 830–833 (1972).
[Crossref] [PubMed]

Sung, J.

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

Towrie, M.

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon Migration in Raman Spectroscopy,” Appl. Spectrosc. 58, 591–597 (2004).
[Crossref] [PubMed]

Wang, K.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Weber, K.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Wilson, R. H.

Yakovlev, V. V.

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

Zheng, X.-S.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Zhu, X.

M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).

Zukovskaja, O.

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

Anal. Chem. (1)

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref] [PubMed]

Analyst (2)

I. J. Jahn, O. Zukovskaja, X.-S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp, “Surface-enhanced raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications,” Analyst 142, 1022–1047 (2017).
[Crossref] [PubMed]

M. Matthiae, X. Zhu, R. Marie, and A. Kristensen, “In-line whole blood fractionation for Raman analysis of blood plasma,” Analyst 144, 602–610 (2019).

Appl. Spectrosc (2)

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 1485–1492 (2005).
[Crossref]

P. Matousek, I. P. Clark, E. Draper, M. D. Morris, A. Goodship, N. Everall, M. Towrie, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc 59, 393–400 (2005).
[Crossref] [PubMed]

Appl. Spectrosc. (2)

Biochim. Biophys. Acta (1)

T. G. Spiro and T.C. Streakas, “Hemoglobin: Resonance Raman spectra,” Biochim. Biophys. Acta 263, 830–833 (1972).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

W. J. Olds, E. Jaatinen, P. Fredericks, B. Cletus, H. Panayiotou, and E. L. Izake, “Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs,” Forensic Sci. Int. 212, 69–77 (2011).
[Crossref] [PubMed]

J. Mod. Opt. (1)

Z. Di, B. H. Hokr, H. Cai, K. Wang, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Spatially offset Raman microspectroscopy of highly scattering tissue: Theory and experiment,” J. Mod. Opt. 62, 97–101 (2015).
[Crossref]

J. Mol. Struct. (1)

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultraviolet visible spectroscopy of pdms silicone rubber for characterization of polymer optical waveguide materials,” J. Mol. Struct. 976, 274 – 281 (2010).
[Crossref]

J. Raman Spectrosc. (3)

J. Qin, M. S. Kim, W. F. Schmidt, B. K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2016).
[Crossref]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset raman spectroscopy (micro-sors),” J. Raman Spectrosc. 46, 476–482 (2015).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral raman system for spatially offset raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
[Crossref]

Spectroscopy (1)

F. Adar, “Resonance Enhancement of Raman Spectroscopy: Friend or Foe?” Spectroscopy 28, 6 (2013).

The Analyst (3)

Y. Cho, S. W. Song, J. Sung, Y.-S. Jeong, C. R. Park, and H. M. Kim, “Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials,” The Analyst 142, 3613–3619 (2017).
[Crossref] [PubMed]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” The Analyst 140, 8127–8133 (2015).
[Crossref] [PubMed]

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” The Analyst 141, 731–739 (2016).
[Crossref]

Other (1)

Matlab, Version R2018a, The MathWorks Inc. (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Raman spectroscopy microfluidic setup. (b) Focused laser beam entering the two-layer system: liquid sample in microchannel and PDMS chip material. (c) The resulting scattered light response. (d-e) Microscope images of scattered light, in focus with the bottom of the microfluidic channel. The optical axis of the excitation laser beam is at Origo. The vertical dashed lines represent the entrance aperture of the imaging spectrometer.
Fig. 2
Fig. 2 (a) Raman spectra of PDMS (green) and hemoglobin (blue), for reference. (b) Hyperspectral Raman CCD image recorded with the imaging spectrometer. Each row represents a Raman spectrum at a different postion (spatial offset y) along the length of the spectrometer entrance slit. The vertical spatial coordinate has origo at the optical axis of the laser beam. (c) Derived crosssection spectra at y=0 μm (red) and y=20 μm (black) spatial offset. (d) Intensity profiles at wavenumbers 1375 cm−1 (blue) and 2920 cm−1 (green).
Fig. 3
Fig. 3 Hyperspectral spatially offset Raman acquisitions at three different focus positions z and respective spatial profiling at wavenumbers 1375 cm−1 of hemoglobin (blue) and 2920 cm−1 of PDMS (green). (a-b) Focused to z = 8 μ m at the bottom of the channel. (c-d) Focused to z = 0 μ m at the middle of the channel. (e-f) Focused to z = 8 μ m at the top of the channel.
Fig. 4
Fig. 4 (a) Comparison of PDMS Raman profiles (2920 cm−1) at different focus positions z. (b) Z-scans of the y = 40 μ m spatially offset PDMS Raman intensity (light grey) as well as the PDMS Raman intensity at zero spatial offset (dark grey).
Fig. 5
Fig. 5 (a) The amplitude of the hemoglobin Raman peak at 1375 cm−1 with 1 g/l in four repetitions. The focus position z = 0 μ m is determined by maximizing the detected Raman amplitude, then a z-scan is performed. (b) The corresponding PDMS Raman ratio P of the same four repititions. (c) Five concentrations, with the optical system adjusted such that P = 5. (d) The derived slopes of the regression at various P values.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = I non offset I offset .

Metrics