Abstract

In order to improve the fabrication efficiency and testing accuracy of meter-scale, large monolithic mirrors, hydraulic support units (HSUs) are commonly used. However, the challenges to reduce the disparity of the HSUs’ stiffness and keep the stability of the mirrors’ altitude are hard to resolve, especially for large-scale mirrors. In this paper, we found the air ratio of the working fluid for HSUs is a key factor for designing the HSUs to resolve the challenges from the analytical solution that we derived for supporting large mirrors. Here we designed, tested and fabricated dozens of HSUs and used a four-meter SiC mirror, the world’s largest monolithic SiC reported in public, as a study case. It shows that the stiffness values of grouped HSUs vary within ± 3%, and the mirror’s reference surface PV is less than 20 μm in 10 days, producing a mirror tip/tilt angle less than 1.5″. The surface error of the supported mirror is about 20 nm, which is very close to the ideal case where uniform stiffness exists, for randomly distributed stiffness values. The repeatability of the in-situ interferometric test with 0.019 λ RMS of the mirror surface demonstrates the supporting system in a high precision. With such a supporting system, the fabrication process of this mirror was estimated to be sped up by 47% compared to the typical fabricating iteration. With minor modifications and easy extensions, such a novel supporting system could be used widely for many in-situ, high-quality fabricating-testing processes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism

Hidehiro Kaneda, Takao Nakagawa, Takashi Onaka, Keigo Enya, Sin'itirou Makiuti, Junji Takaki, Masaki Haruna, Masami Kume, and Tsuyoshi Ozaki
Appl. Opt. 47(8) 1122-1128 (2008)

Cryogenic optical testing of an 800mm lightweight C/SiC composite mirror mounted on a C/SiC optical bench

Hidehiro Kaneda, Masataka Naitoh, Tadashi Imai, Yoshio Tange, Keigo Enya, Haruyoshi Katayama, Kenta Maruyama, Takao Nakagawa, Takashi Onaka, Masahiro Suganuma, Ryoko Kano, Yuichi Kiriyama, Tatsuya Mori, and Ai Takahashi
Appl. Opt. 49(20) 3941-3948 (2010)

Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system

Emmanuel Hugot, Marc Ferrari, Kacem El Hadi, Pascal Vola, Jean Luc Gimenez, Gérard R. Lemaitre, Patrick Rabou, Kjetil Dohlen, Pascal Puget, Jean Luc Beuzit, and Norbert Hubin
Appl. Opt. 48(15) 2932-2941 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Bougoin and P. Deny, “The SiC Technology is ready for the next generation of extremely large telescopes,” Proc. SPIE 4850, 606–618 (2003).
  2. X. Zhang, Z. Li, and Z. Zhang, “Space telescope aspherical mirror structure design based on SiC material,” Infrared Laser Eng. 36(5), 577–582 (2007) (in Chinese).
  3. S. Liu, R. Hu, Q. Li, P. Zhou, Z. Dong, and R. Kang, “Topology optimization-based lightweight primary mirror design of a large-aperture space telescope,” Appl. Opt. 53(35), 8318–8325 (2014).
    [Crossref] [PubMed]
  4. M. Kotani, T. Imai, H. Katayama, Y. Yui, Y. Tange, H. Kaneda, T. Nakagawa, and K. Enya, “Quality evaluation of spaceborne SiC mirrors (I): analytical examination of the effects on mirror accuracy by variation in the thermal expansion property of the mirror surface,” Appl. Opt. 52(20), 4797–4805 (2013).
    [Crossref] [PubMed]
  5. E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
    [Crossref]
  6. G. Zhang, W. Zhao, and R. Zhao, “Fabricating large-scale mirrors using reaction-bonded silicon carbide,” SPIE Newsroom, http://spie.org/newsroom/6582-fabricating-large-scale-mirrors-using-reaction-bonded-silicon-carbide?SSO=1 .(2016-08-09).
    [Crossref]
  7. B. Lan, X. Wu, J. Li, M. Ming, X. Liu, and H. Yang, “Influence of axial-force errors on the deformation of the 4 m lightweight mirror and its correction,” Appl. Opt. 56(3), 611–619 (2017).
    [Crossref] [PubMed]
  8. H. Hu, E. Qi, X. Luo, X. Zhang, and D. Xue, “Rapid fabrication strategy for Ø1.5 m off-axis parabolic parts using computer-controlled optical surfacing,” Appl. Opt. 57(34), F37–F43 (2018).
    [Crossref] [PubMed]
  9. E. E. Bloemhof, J. C. Lam, V. A. Feria, and Z. Chang, “Extracting the zero-gravity surface figure of a mirror through multiple clockings in a flightlike hexapod mount,” Appl. Opt. 48(21), 4239–4245 (2009).
    [Crossref] [PubMed]
  10. L. Huang, M. Idir, C. Zuo, T. Wang, K. Tayabaly, and E. Lippmann, “Two-dimensional stitching interferometry based on tilt measurement,” Opt. Express 26(18), 23278–23286 (2018).
    [Crossref] [PubMed]
  11. X. Wu, Y. Yu, K. Mou, and W. Wang, “In-situ stitching interferometric test system for large plano optics,” Adv. Manuf. 6(2), 195–203 (2018).
    [Crossref]
  12. J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
    [Crossref]
  13. G. Yu, D. Walker, and H. Li, “Research on Fabrication of Mirror Segments for E-ELT,” Proc. SPIE 8416, 841602 (2012).
    [Crossref]
  14. P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
    [Crossref]
  15. J. Yoder, Opto-Mechanical Systems Design, edition III (SPIE, 2006).
  16. H. Martin, R. Allen, and B. Cuerden, “Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope,” Proc. SPIE 6273, 62730C (2006).
    [Crossref]
  17. H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
    [Crossref]
  18. H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
    [Crossref]
  19. L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
    [Crossref]
  20. S. Sporer, “TMT-Stressed Mirror Polishing Fixture Study,” Proc. SPIE 6267, 62672R (2006).
    [Crossref]

2018 (3)

2017 (1)

2016 (2)

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

2014 (2)

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

S. Liu, R. Hu, Q. Li, P. Zhou, Z. Dong, and R. Kang, “Topology optimization-based lightweight primary mirror design of a large-aperture space telescope,” Appl. Opt. 53(35), 8318–8325 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

G. Yu, D. Walker, and H. Li, “Research on Fabrication of Mirror Segments for E-ELT,” Proc. SPIE 8416, 841602 (2012).
[Crossref]

2010 (1)

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

2009 (1)

2007 (2)

J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
[Crossref]

X. Zhang, Z. Li, and Z. Zhang, “Space telescope aspherical mirror structure design based on SiC material,” Infrared Laser Eng. 36(5), 577–582 (2007) (in Chinese).

2006 (2)

H. Martin, R. Allen, and B. Cuerden, “Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope,” Proc. SPIE 6273, 62730C (2006).
[Crossref]

S. Sporer, “TMT-Stressed Mirror Polishing Fixture Study,” Proc. SPIE 6267, 62672R (2006).
[Crossref]

2003 (2)

M. Bougoin and P. Deny, “The SiC Technology is ready for the next generation of extremely large telescopes,” Proc. SPIE 4850, 606–618 (2003).

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Allen, R.

H. Martin, R. Allen, and B. Cuerden, “Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope,” Proc. SPIE 6273, 62730C (2006).
[Crossref]

Bloemhof, E. E.

Bougoin, M.

M. Bougoin and P. Deny, “The SiC Technology is ready for the next generation of extremely large telescopes,” Proc. SPIE 4850, 606–618 (2003).

Burge, J.

J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
[Crossref]

Chang, Z.

Cole, G.

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

Cuerden, B.

H. Martin, R. Allen, and B. Cuerden, “Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope,” Proc. SPIE 6273, 62730C (2006).
[Crossref]

Cunningham, C.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

de Chambure, D.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

DeBra, D.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Deny, P.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

M. Bougoin and P. Deny, “The SiC Technology is ready for the next generation of extremely large telescopes,” Proc. SPIE 4850, 606–618 (2003).

Dong, Z.

Duran, M.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Enya, K.

Evans, C.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Feria, V. A.

Ford, V.

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

Gilmozzi, R.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Hough, J.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Hu, H.

H. Hu, E. Qi, X. Luo, X. Zhang, and D. Xue, “Rapid fabrication strategy for Ø1.5 m off-axis parabolic parts using computer-controlled optical surfacing,” Appl. Opt. 57(34), F37–F43 (2018).
[Crossref] [PubMed]

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

Hu, R.

Huang, L.

Idir, M.

Imai, T.

Kaneda, H.

Kang, R.

Katayama, H.

Kotani, M.

Kunzmann, H.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Lam, J. C.

Lan, B.

Li, H.

G. Yu, D. Walker, and H. Li, “Research on Fabrication of Mirror Segments for E-ELT,” Proc. SPIE 8416, 841602 (2012).
[Crossref]

Li, J.

Li, Q.

Li, Z.

X. Zhang, Z. Li, and Z. Zhang, “Space telescope aspherical mirror structure design based on SiC material,” Infrared Laser Eng. 36(5), 577–582 (2007) (in Chinese).

Lippmann, E.

Liu, S.

Liu, X.

Liu, Z.

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

Luo, X.

H. Hu, E. Qi, X. Luo, X. Zhang, and D. Xue, “Rapid fabrication strategy for Ø1.5 m off-axis parabolic parts using computer-controlled optical surfacing,” Appl. Opt. 57(34), F37–F43 (2018).
[Crossref] [PubMed]

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

Martin, H.

H. Martin, R. Allen, and B. Cuerden, “Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope,” Proc. SPIE 6273, 62730C (2006).
[Crossref]

Ming, M.

Morantz, P.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Mou, K.

X. Wu, Y. Yu, K. Mou, and W. Wang, “In-situ stitching interferometric test system for large plano optics,” Adv. Manuf. 6(2), 195–203 (2018).
[Crossref]

Nakagawa, T.

Novak, M.

J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
[Crossref]

Passvogel, T.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Pilbratt, G. L.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Qi, E.

H. Hu, E. Qi, X. Luo, X. Zhang, and D. Xue, “Rapid fabrication strategy for Ø1.5 m off-axis parabolic parts using computer-controlled optical surfacing,” Appl. Opt. 57(34), F37–F43 (2018).
[Crossref] [PubMed]

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

Safa, F.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Sein, E.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Shore, P.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Sporer, S.

S. Sporer, “TMT-Stressed Mirror Polishing Fixture Study,” Proc. SPIE 6267, 62672R (2006).
[Crossref]

Su, P.

J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
[Crossref]

Tange, Y.

Tayabaly, K.

Tonnellier, X.

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Toulemont, Y.

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

Walker, D.

G. Yu, D. Walker, and H. Li, “Research on Fabrication of Mirror Segments for E-ELT,” Proc. SPIE 8416, 841602 (2012).
[Crossref]

Wang, T.

Wang, W.

X. Wu, Y. Yu, K. Mou, and W. Wang, “In-situ stitching interferometric test system for large plano optics,” Adv. Manuf. 6(2), 195–203 (2018).
[Crossref]

Wang, X.

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

Wu, X.

Xin, H.

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

Xiong, L.

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

Xue, D.

Yang, H.

Yellowhair, J.

J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
[Crossref]

Yoder, J.

J. Yoder, Opto-Mechanical Systems Design, edition III (SPIE, 2006).

Yu, G.

G. Yu, D. Walker, and H. Li, “Research on Fabrication of Mirror Segments for E-ELT,” Proc. SPIE 8416, 841602 (2012).
[Crossref]

Yu, Y.

X. Wu, Y. Yu, K. Mou, and W. Wang, “In-situ stitching interferometric test system for large plano optics,” Adv. Manuf. 6(2), 195–203 (2018).
[Crossref]

Yui, Y.

Zhang, F.

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

Zhang, X.

H. Hu, E. Qi, X. Luo, X. Zhang, and D. Xue, “Rapid fabrication strategy for Ø1.5 m off-axis parabolic parts using computer-controlled optical surfacing,” Appl. Opt. 57(34), F37–F43 (2018).
[Crossref] [PubMed]

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

X. Zhang, Z. Li, and Z. Zhang, “Space telescope aspherical mirror structure design based on SiC material,” Infrared Laser Eng. 36(5), 577–582 (2007) (in Chinese).

Zhang, Z.

X. Zhang, Z. Li, and Z. Zhang, “Space telescope aspherical mirror structure design based on SiC material,” Infrared Laser Eng. 36(5), 577–582 (2007) (in Chinese).

Zheng, L.

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

Zhou, P.

Zuo, C.

Acta Opt. Sin. (1)

H. Hu, X. Luo, H. Xin, E. Qi, L. Zheng, and X. Zhang, “Layout optimization of equal-force supports for ultra large optical fabrication,” Acta Opt. Sin. 34(4), 0422003 (2014) (in Chinese).
[Crossref]

Adv. Manuf. (1)

X. Wu, Y. Yu, K. Mou, and W. Wang, “In-situ stitching interferometric test system for large plano optics,” Adv. Manuf. 6(2), 195–203 (2018).
[Crossref]

Appl. Opt. (5)

CIRP Ann. Manuf. Techn. (1)

P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H. Kunzmann, P. Morantz, and X. Tonnellier, “Precision engineering for astronomy and gravity science,” CIRP Ann. Manuf. Techn. 59(2), 694–716 (2010).
[Crossref]

Infrared Laser Eng. (1)

X. Zhang, Z. Li, and Z. Zhang, “Space telescope aspherical mirror structure design based on SiC material,” Infrared Laser Eng. 36(5), 577–582 (2007) (in Chinese).

Opt. Eng. (1)

L. Xiong, X. Luo, Z. Liu, X. Wang, H. Hu, F. Zhang, L. Zheng, and X. Zhang, “Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics,” Opt. Eng. 55(7), 074108 (2016).
[Crossref]

Opt. Express (1)

Proc. SPIE (7)

S. Sporer, “TMT-Stressed Mirror Polishing Fixture Study,” Proc. SPIE 6267, 62672R (2006).
[Crossref]

H. Hu, E. Qi, G. Cole, H. Hu, X. Luo, V. Ford, and X. Zhang, “Hydrostatic supports for polishing TMT M3MP,” Proc. SPIE 9682, 968208 (2016).
[Crossref]

M. Bougoin and P. Deny, “The SiC Technology is ready for the next generation of extremely large telescopes,” Proc. SPIE 4850, 606–618 (2003).

E. Sein, Y. Toulemont, F. Safa, M. Duran, P. Deny, D. de Chambure, T. Passvogel, and G. L. Pilbratt, “A ϕ3.5 m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[Crossref]

J. Yellowhair, P. Su, M. Novak, and J. Burge, “Fabrication and Testing of Large Flats,” Proc. SPIE 6671, 667107 (2007).
[Crossref]

G. Yu, D. Walker, and H. Li, “Research on Fabrication of Mirror Segments for E-ELT,” Proc. SPIE 8416, 841602 (2012).
[Crossref]

H. Martin, R. Allen, and B. Cuerden, “Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope,” Proc. SPIE 6273, 62730C (2006).
[Crossref]

Other (2)

J. Yoder, Opto-Mechanical Systems Design, edition III (SPIE, 2006).

G. Zhang, W. Zhao, and R. Zhao, “Fabricating large-scale mirrors using reaction-bonded silicon carbide,” SPIE Newsroom, http://spie.org/newsroom/6582-fabricating-large-scale-mirrors-using-reaction-bonded-silicon-carbide?SSO=1 .(2016-08-09).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 HISS for testing-fabricating large mirrors: (a) system concept; (b) loop concept.
Fig. 2
Fig. 2 HSU section view and the diaphragm’s tensile force.
Fig. 3
Fig. 3 Force balance of the HSU in pressurized state.
Fig. 4
Fig. 4 Testing a 5-unit group: (a) group with 5 HSUs in test; (b) vapor buffer bottle.
Fig. 5
Fig. 5 Unit stiffness prediction of 3 types of group working for 4-m SiC mirror.
Fig. 6
Fig. 6 Stability performance of unloaded hydraulic groups.
Fig. 7
Fig. 7 Stability performance of HISS system applied to a dummy mirror.
Fig. 8
Fig. 8 Monolithic 4-m SiC mirror and its HISS: (a) mirror; (b) 5 HISS groups.
Fig. 9
Fig. 9 Illustration for in situ polishing and testing process: (a) polishing site; (b) testing site.
Fig. 10
Fig. 10 Back view of the FE model representing the mirror-HISS system.
Fig. 11
Fig. 11 Surface figure of coupled HISS-mirror system, eliminating the largest 4 order errors: (a) Random stiffness; (b) Uniform stiffness.
Fig. 12
Fig. 12 Figure difference caused by the HISS rotation.
Fig. 13
Fig. 13 Adjustment caused stress: (a) max. 0.53 MPa at back; (b) max. 0.11 MPa on the surface.

Tables (3)

Tables Icon

Table 1 Force accuracy for 5 HSUs in group

Tables Icon

Table 2 Stiffness for grouped 5 HSUs at about 300 N

Tables Icon

Table 3 Stiffness test for 3# HSU at different load

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

2 F = 2 π R C P
F P = F out + F + G
π R 2 P = F out + π R C P + m g
S = d F out d s
d F out = π R ( R C ) d P = π R ( R C ) K d V V
d V = π R C ( d s + d l 2 ) π R 2 d s
S = π 2 R 2 ( R C ) ( R C / 2 ) V / K + π R C 2 l / 4 E t
P 0 a V 0 a = C 0
d V a = V a V 0 a = d P V 0 a P
S = π 2 R 2 ( R C ) ( R C / 2 ) V f / K + π R C 2 l / 4 E t + V 0 a / P
S i = 1 n j = 1 n S i j
d F u = C d P 2
d F u = E t d l l
d l = C l 2 E t d P
d P = π R K V [ ( R C 2 ) d s C d l 2 ]
d P = π R K V [ ( R C 2 ) d s C 2 l 4 E t d P ]
d P d s = π R ( R C / 2 ) V / K + π R C 2 l / 4 E t
S = π 2 R 2 ( R C ) ( R C / 2 ) V / K + π R C 2 l / 4 E t
d V a = d P P V 0 a
d V f = d P P V 0 a + π R C ( d s + d l 2 ) π R 2 d s
d P = K V f [ π R 2 d s π R C ( d s 2 + C l 4 E t d P ) d P P V 0 a ]
S = π 2 R 2 ( R C ) ( R - C / 2 ) V f / K + π R C 2 l / 4 E t + V 0 a / P

Metrics