Abstract

We describe a procedure to calculate the impulse response and phase noise of high-current photodetectors using the drift-diffusion equations while avoiding computationally expensive Monte Carlo simulations. We apply this procedure to a modified uni-traveling-carrier (MUTC) photodetector. In our approach, we first use the full drift-diffusion equations to calculate the steady-state photodetector parameters. We then perturb the generation rate as a function of time to calculate the impulse response. We next calculate the fundamental shot noise limit and cut-off frequency of the device. We find the contributions of the electron, hole, and displacement currents. We calculate the phase noise of an MUTC photodetector. We find good agreement with experimental and Monte Carlo simulation results. We show that phase noise is minimized by having an impulse response with a tail that is as small as possible. Since, our approach is much faster computationally than Monte Carlo simulations, we are able to carry out a broad parameter study to optimize the device performance. We propose a new optimized structure with less phase noise and reduced nonlinearity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectral response, dark current, and noise analyses in resonant tunneling quantum dot infrared photodetectors

Hamed Dehdashti Jahromi, Ali Mahmoodi, Mohammad Hossein Sheikhi, and Abbas Zarifkar
Appl. Opt. 55(30) 8494-8499 (2016)

Reconstructing the impulse response of a diffusive medium with the Kramers-Kronig relations

Er'el Granot and Shmuel Sternklar
J. Opt. Soc. Am. B 24(7) 1620-1626 (2007)

References

  • View by:
  • |
  • |
  • |

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991).
    [Crossref]
  2. V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics(Wiley, 2015).
  3. F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulses,” J. Opt. Soc. Am. B 30, 1775–1785 (2013).
    [Crossref]
  4. R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18, 5041–5054 (2010).
    [Crossref] [PubMed]
  5. S. Wang, T. F. Carruthers, and C. R. Menyuk, “Efficiently modeling the noise performance of short-pulse lasers with a computational implementation of dynamical methods,” J. Opt. Soc. Am. B 35, 2521–2531 (2018).
    [Crossref]
  6. C. R. Menyuk and S. Wang, “Spectral methods for determining the stability and noise performance of passively modelocked lasers,” Nanophotonics 5, 332–350 (2016).
    [Crossref]
  7. F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
    [Crossref]
  8. W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
    [Crossref] [PubMed]
  9. Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
    [Crossref]
  10. Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.
  11. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
    [Crossref]
  12. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
    [Crossref]
  13. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in P-I-N microwave photodetectors,” J. Lightw. Technol. 14, 84–96 (1996).
    [Crossref]
  14. Y. Hu, “Modeling Nonlinearity and Noise in High-Current Photodetectors,” Ph.D. Thesis (University of Maryland Baltimore County, 2017).

2018 (1)

2016 (1)

C. R. Menyuk and S. Wang, “Spectral methods for determining the stability and noise performance of passively modelocked lasers,” Nanophotonics 5, 332–350 (2016).
[Crossref]

2014 (2)

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

2013 (2)

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulses,” J. Opt. Soc. Am. B 30, 1775–1785 (2013).
[Crossref]

2010 (2)

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18, 5041–5054 (2010).
[Crossref] [PubMed]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

1996 (1)

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in P-I-N microwave photodetectors,” J. Lightw. Technol. 14, 84–96 (1996).
[Crossref]

Beling, A.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Campbell, J. C.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Carruthers, T. F.

S. Wang, T. F. Carruthers, and C. R. Menyuk, “Efficiently modeling the noise performance of short-pulse lasers with a computational implementation of dynamical methods,” J. Opt. Soc. Am. B 35, 2521–2531 (2018).
[Crossref]

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in P-I-N microwave photodetectors,” J. Lightw. Technol. 14, 84–96 (1996).
[Crossref]

Deschenes, J. D.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

Diddams, S. A.

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulses,” J. Opt. Soc. Am. B 30, 1775–1785 (2013).
[Crossref]

Diddams, Scott A.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

Esman, R. D.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in P-I-N microwave photodetectors,” J. Lightw. Technol. 14, 84–96 (1996).
[Crossref]

Fortier, T. M.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulses,” J. Opt. Soc. Am. B 30, 1775–1785 (2013).
[Crossref]

Fu, Y.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

Hati, A.

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

Hu, Y.

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

Y. Hu, “Modeling Nonlinearity and Noise in High-Current Photodetectors,” Ph.D. Thesis (University of Maryland Baltimore County, 2017).

Hutchinson, M.

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

Jiang, H.

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulses,” J. Opt. Soc. Am. B 30, 1775–1785 (2013).
[Crossref]

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Marks, B. S.

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

McKinney, J. D.

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics(Wiley, 2015).

Menyuk, C. R.

S. Wang, T. F. Carruthers, and C. R. Menyuk, “Efficiently modeling the noise performance of short-pulse lasers with a computational implementation of dynamical methods,” J. Opt. Soc. Am. B 35, 2521–2531 (2018).
[Crossref]

C. R. Menyuk and S. Wang, “Spectral methods for determining the stability and noise performance of passively modelocked lasers,” Nanophotonics 5, 332–350 (2016).
[Crossref]

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

Nelson, C.

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Paschotta, R.

Quinlan, F.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulses,” J. Opt. Soc. Am. B 30, 1775–1785 (2013).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991).
[Crossref]

Sun, W.

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991).
[Crossref]

Urick, V. J.

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics(Wiley, 2015).

Wang, S.

S. Wang, T. F. Carruthers, and C. R. Menyuk, “Efficiently modeling the noise performance of short-pulse lasers with a computational implementation of dynamical methods,” J. Opt. Soc. Am. B 35, 2521–2531 (2018).
[Crossref]

C. R. Menyuk and S. Wang, “Spectral methods for determining the stability and noise performance of passively modelocked lasers,” Nanophotonics 5, 332–350 (2016).
[Crossref]

Williams, K. J.

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in P-I-N microwave photodetectors,” J. Lightw. Technol. 14, 84–96 (1996).
[Crossref]

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics(Wiley, 2015).

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

IEEE J. Quantum Electron. (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

IEEE J. Sel. Topics Quantum Electron (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron.  10, 709–727 (2004).
[Crossref]

J. Lightw. Technol. (2)

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in P-I-N microwave photodetectors,” J. Lightw. Technol. 14, 84–96 (1996).
[Crossref]

Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling sources of nonlinearity in a simple PIN photodetector,” J. Lightw. Technol. 32, 3710–3720 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

Nanophotonics (1)

C. R. Menyuk and S. Wang, “Spectral methods for determining the stability and noise performance of passively modelocked lasers,” Nanophotonics 5, 332–350 (2016).
[Crossref]

Nat. Photonics (1)

F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

W. Sun, F. Quinlan, T. M. Fortier, J. D. Deschenes, Y. Fu, Scott A. Diddams, and J. C. Campbell, “Broadband noise limit in the photodetection of ultralow jitter optical pulses,” Phys. Rev. Lett. 113, 203901 (2014).
[Crossref] [PubMed]

Other (4)

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. Hutchinson, V. J. Urick, and K. J. Williams, “Modeling nonlinearity in a modified uni-traveling-carrier (MUTC) photodetector,”), IEEE Photonics Conference (IPC) (IEEE, 2015), pp.122–123.

Y. Hu, “Modeling Nonlinearity and Noise in High-Current Photodetectors,” Ph.D. Thesis (University of Maryland Baltimore County, 2017).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991).
[Crossref]

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics(Wiley, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Structure of the MUTC photodetector. Green indicates the absorption layers, which include an intrinsic region and a p-doped region. Red indicates highly doped InP layers, purple indicates highly-doped InGaAs layers, and white indicates other layers.
Fig. 2
Fig. 2 (a) Electric field distribution at steady state inside the MUTC photodetector and (b) density of electrons (red) and holes (blue) at steady state inside the MUTC photodetector. Iout = 15 mA and Vbias = 16 V. The photon absorption region is shown between vertical dot-dashed lines.
Fig. 3
Fig. 3 Normalized impulse response of the MUTC photodetector.
Fig. 4
Fig. 4 Power spectral density of the MUTC photodetector.
Fig. 5
Fig. 5 Power spectral density of the MUTC photodetector for different parameters.
Fig. 6
Fig. 6 Phase noise of the MUTC photodetector as a function of offset frequency from the fifth harmonic at 10 GHz for three different optical pulse widths. Dot-dashed lines are experimental results of Quinlan et al. [7]; solid lines are Monte Carlo simulation results of Sun et al. [8]; dotted lines are our simulation results.
Fig. 7
Fig. 7 Phase noise deviation from the long pulse limit.
Fig. 8
Fig. 8 Contribution of each of the absorption layers to the impulse response of the MUTC photodetector.
Fig. 9
Fig. 9 Fundamental and IMD2 powers as a function of reverse bias for input frequencies F1 = 4.9 GHz, F2 = 5.0 GHz, and F3 = 5.15 GHz for the Li et al. [11] structure and the modified structure.
Fig. 10
Fig. 10 Numerical mesh used for the finite difference spatial discretization of the 1-D drift-diffusion equation.

Tables (1)

Tables Icon

Table 1 Phase Noise 1 = phase noise of the Li et al. [11] structure; Phase Noise 2 = phase noise of the modified structure; Difference = (Phase Noise 1) − (Phase Noise 2).

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

Δ G opt r G opt rect ( t τ ) ,
rect ( t ) = { 0 , t < 0 1 , 0 < t < 1 0 , 1 < t
h ( t ) = Δ I out ( t ) 0 Δ I out ( t ) d t ,
H ( f ) = h ( t ) exp ( 2 π j f t ) d t .
T { x ( t ) } T / 2 T / 2 x ( t ) exp ( j 2 π f t ) d t .
T { i ( t ) } = T / 2 T / 2 i ( t ) exp ( j 2 π f t ) d t = 1 2 K k = K K 1 0 T R i ( t + k T R ) exp [ j 2 π f ( t + k T R ) ] d t ,
T { i ( t ) } = 1 2 K k = K K 1 0 T R i k ( t ) exp ( j 2 π f t ) d t .
R n + j Q n = 1 2 K k = K K 1 0 T R i k ( t ) [ cos ( 2 π n f r t ) j sin ( 2 π n f r t ) ] d t ,
c k ( t ) lim K 1 2 K k = K K 1 c k ( t ) .
R n + j Q n = 1 2 K k = K K 1 0 T R i k ( t ) { cos [ 2 π n T R ( t t c ) ] j sin [ 2 π n T R ( t t c ) ] } d t ,
Q n = 0 T R i k ( t ) sin [ 2 π n T R ( t t c ) ] d t = 0 .
Φ n = j k = K K 1 0 T R i k ( t ) sin [ 2 π n T R ( t t c ) ] d t k = K K 1 0 T R i k ( t ) cos [ 2 π n T R ( t t c ) ] d t = 0 .
Φ k n = Q k n R n = j 0 T R i k ( t ) sin [ 2 π n T R ( t t c ) ] d t 0 T R i k ( t ) cos [ 2 π n T R ( t t c ) ] d t .
Φ k n 2 = 0 T R 0 T R i k ( t ) i k ( u ) sin [ 2 π n T R ( t t c ) ] sin [ 2 π n T R ( u t c ) ] d t d u { 0 T R i k ( t ) cos [ 2 π n T R ( t t c ) ] d t } 2 .
i k ( t ) i k ( u ) i k ( t ) i k ( u ) = h ( t ) e 2 N tot δ ( t u ) .
Φ n 2 = 1 N tot 0 T R h ( t ) sin 2 [ 2 π n ( t t c ) / T R ] d t { 0 T R h ( t ) cos [ 2 π n ( t t c ) / T R ] d t } 2 ,
Φ n 2 = 1 N tot 0 T R h e ( t ) sin 2 [ 2 π n ( t t c ) / T R ] d t { 0 T R h e ( t ) cos [ 2 π n ( t t c ) / T R ] d t } 2 ,
h e ( t ) = j = 1 N h j ( t ) ,
( p N A ) t = 1 q J p + G ii + G opt R ( n , p ) , ( n N D + ) t = + 1 q J n + G ii + G opt R ( n , p ) , E = q ϵ ( n p + N A N D + ) ,
J p = q p v p ( E ) q D p p , J n = q n v n ( E ) + q D n n ,
G opt = G c exp [ α ( L x ) ] ,
G ii = α n | J n | q + α p | J p | q ,
α n = A n exp [ ( B n | E | ) m ] ,
α p = A p exp [ ( B p | E | ) m ] ,
R = n p n i 2 τ p ( n + n i ) + τ n ( p + n i ) ,
0 = 1 q J p + G ii + G opt R ( n , p ) , 0 = + 1 q J n + G ii + G opt R ( n , p ) , E = q ϵ ( n p + N A N D + ) .
E i + 1 / 2 = ( ψ i + 1 ψ i h i ) ,
p x | i + 1 / 2 = ( p i + 1 p i h i ) , n x | i + 1 / 2 = ( n i + 1 n i h i ) ,
J p , i + 1 / 2 = q p i + 1 / 2 v p , i + 1 / 2 ( E ) q D p , i + 1 / 2 ( p i + 1 p i h i ) , J n , i + 1 / 2 = q n i + 1 / 2 v n , i + 1 / 2 ( E ) + q D n , i + 1 / 2 ( n i + 1 n i h i ) ,
J p , i x = J p , i + 1 / 2 J p , i 1 / 2 [ ( h i + h i 1 ) / 2 ] , J n , i x = J n , i + 1 / 2 J n , i 1 / 2 [ ( h i + h i 1 ) / 2 ] .
J total = J n + J p + ϵ E t .

Metrics