Abstract

We propose a novel simple patterned monolayer graphene metamaterial structure based on tunable terahertz plasmon-induced transparency (PIT). Destructive interference in this structure causes pronounced PIT phenomenon, and the PIT response can be dynamically controlled by voltage since the existence of continuous graphene bands in the structural design. The theoretical transmission of this structure is calculated by coupled mode theory (CMT), and the results are highly consistent with the simulation curve. After that, the influence of the graphene mobility on the PIT response and absorption characteristics is researched. It is found that the absorption efficiency of our designed structure can reach up to 50%, meaning the structure is competent to prominent terahertz absorber. Moreover, the slow-light performance of this structure is discussed via analyzing the group refractive index and phase shift. It shows that the structure possesses a broad group refractive index band with ultra-high value, and the value is up to 382. This work will diversify the designs for versatile tunable terahertz devices and micro-nano slow-light devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial

Enduo Gao, Zhimin Liu, Hongjian Li, Hui Xu, Zhenbin Zhang, Xin Luo, Cuixiu Xiong, Chao Liu, Baihui Zhang, and Fengqi Zhou
Opt. Express 27(10) 13884-13894 (2019)

Dual dynamically tunable plasmon-induced transparency in H-type-graphene-based slow-light metamaterial

Enduo Gao, Zhimin Liu, Hongjian Li, Hui Xu, Zhenbin Zhang, Xiao Zhang, Xin Luo, Cuixiu Xiong, Chao Liu, Baihui Zhang, and Fengqi Zhou
J. Opt. Soc. Am. A 36(8) 1306-1311 (2019)

Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial

Hui Xu, Hongjian Li, Zhihui He, Zhiquan Chen, Mingfei Zheng, and Mingzhuo Zhao
Opt. Express 25(17) 20780-20790 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  2. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  3. Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
    [Crossref]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  5. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
    [Crossref] [PubMed]
  6. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  7. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [Crossref] [PubMed]
  8. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
    [Crossref] [PubMed]
  9. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19(2), 628–637 (2011).
    [Crossref] [PubMed]
  10. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  11. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  12. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  13. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
    [Crossref]
  14. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  15. H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
    [Crossref]
  16. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  17. G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
    [Crossref]
  18. Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
    [Crossref]
  19. T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
    [Crossref]
  20. Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
    [Crossref]
  21. X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
    [Crossref] [PubMed]
  22. R. Zhou, S. Yang, D. Liu, and G. Cao, “Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays,” Opt. Express 25(25), 31478–31491 (2017).
    [Crossref] [PubMed]
  23. K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
    [Crossref]
  24. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  25. X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
    [Crossref] [PubMed]
  26. X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  27. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  28. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  29. X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
    [Crossref] [PubMed]
  30. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
    [Crossref] [PubMed]
  31. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
    [Crossref]
  32. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  33. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  34. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
    [Crossref] [PubMed]
  35. E. D. Palik, B. “Handbook of optical constants of solids”, Academic press, San Diego, USA, 1985; pp.547–569, 719–763.
  36. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
    [Crossref]
  37. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref] [PubMed]
  38. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
    [Crossref]

2018 (5)

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
[Crossref] [PubMed]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

2017 (4)

R. Zhou, S. Yang, D. Liu, and G. Cao, “Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays,” Opt. Express 25(25), 31478–31491 (2017).
[Crossref] [PubMed]

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

2016 (5)

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref] [PubMed]

2015 (1)

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

2014 (1)

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

2013 (2)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

2012 (4)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (3)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

2008 (3)

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Boxun, L.

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Cao, G.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Chen, J.-H.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Chen, Z.

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Chowdhury, D. R.

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

Dai, J.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Dai, L.

Dai, Y.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Devi, K. M.

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, G.

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

Fuhrer, M. S.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Gao, B.

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Geluk, E. J.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

Gong, Q.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Guangtao, C.

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, X.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hayasaka, K.

Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]

He, W.

He, X.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

He, Z.

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Hill, M. T.

Hongjian, L.

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Huang, X.

Hui, Y.

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Ishigami, M.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Islam, M.

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Jang, C.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Jiang, C.

Karouta, F.

Kasai, K.

Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Kumar, G.

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Leong, E. S. P.

Li, H.

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Li, J.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Li, Z.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Lin, F.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref] [PubMed]

Lin, Q.

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

Liu, D.

Liu, F.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref] [PubMed]

Liu, J. Q.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Lu, H.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Marell, M.

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Ning, C.-Z.

Nötzel, R.

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Oei, Y.-S.

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Qin, M.

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

Ran, J.

Sarma, A. K.

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

Shi, W.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Shiping, Z.

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Smalbrugge, B.

Smit, M. K.

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sun, B.

Sun, M.

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, B.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

van Veldhoven, P. J.

Wang, F.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Wang, L.

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

Wang, L. L.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, S. C.

Xia, S.

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

Xia, S. X.

Xiang, Y.

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xiao, S.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Xiong, C.

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

Xu, H.

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Xu, K.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Yang, F.

Yang, S.

Yao, J.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Yin, F.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Yuan, C.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref] [PubMed]

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Zhai, X.

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

Zhang, B.

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]

Zhao, M.

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Zhao, X.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref] [PubMed]

Zheng, M.

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Zhihui, H.

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Zhou, J.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Zhou, R.

Zhou, Y.

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Zhu, L.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref] [PubMed]

Zhu, Y.

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Carbon (1)

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Europhys. Lett. (1)

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” Europhys. Lett. 120(2), 27005 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE Photonic. Tech. L. (1)

Y. Xiang, X. Zhai, Q. Lin, S. Xia, M. Qin, and L. Wang, “Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator,” IEEE Photonic. Tech. L. 30(7), 622–625 (2018).
[Crossref]

J. Appl. Phys. (1)

H. Xu, M. Zhao, Z. Chen, M. Zheng, C. Xiong, B. Zhang, and H. Li, “Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials,” J. Appl. Phys. 123(20), 203103 (2018).
[Crossref]

J. Opt. (1)

G. Fu, X. Zhai, H. Li, S. Xia, and L. Wang, “Dynamically tunable plasmon induced transparency in graphene metamaterials,” J. Opt. 19(1), 015001 (2017).
[Crossref]

J. Phys. D Appl. Phys. (2)

Z. Shiping, L. Hongjian, C. Guangtao, H. Zhihui, L. Boxun, and Y. Hui, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D Appl. Phys. 51(5), 055103 (2018).
[Crossref]

Nano Lett. (2)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Nanoscale (2)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Nature (2)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Commun. (1)

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial,” Opt. Commun. 407, 250–254 (2018).
[Crossref]

Opt. Express (7)

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19(2), 628–637 (2011).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
[Crossref] [PubMed]

R. Zhou, S. Yang, D. Liu, and G. Cao, “Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays,” Opt. Express 25(25), 31478–31491 (2017).
[Crossref] [PubMed]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref] [PubMed]

Phys. Rev. A (2)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]

Phys. Rev. Lett. (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

E. D. Palik, B. “Handbook of optical constants of solids”, Academic press, San Diego, USA, 1985; pp.547–569, 719–763.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)Three-dimensional structure sketch of tunable graphene-based PIT metamaterial in terahertz; (b)Top view of unit cell of the structure in Fig. 1(a) with its concrete structural parameters: L = 4μm, a = 0.85μm, b = 1.2μm, c = 2.7μm, d = 0.175μm.
Fig. 2
Fig. 2 (a)The transmission spectrum of the proposed graphene PIT metamaterial in this paper when the polarization plane wave incident along the negative direction of y-axis. Among them, the red-line is the transmission curve of the periodic array consist of the graphene in element B, orange-line is the transmission curve of the periodic array composed of graphene in element D, and green-line is the transmission curve of the graphene periodic array equip with both element B and element D. At this situation, EF of element B and element D is 1.0eV and 0.7eV, respectively, and the graphene mobility is 2.5m2/Vs; (b) Equivalent CMT model for the proposed structure in this work.
Fig. 3
Fig. 3 (a)The transmission spectra of the graphene PIT metamaterial at terahertz band when EF in element B is maintained at 1.0eV and in element D is 0.5eV, 0.6eV, 0.7eV, 0.8eV, 0.9eV, 1.0eV, from top to bottom. Here, the graphene mobility defaults to 2.5m2/Vs; (b)The function relationship between EF and the frequency corresponding to trough1, trough2 and peak according to Fig. 3(a); (c)The functional relationship between frequency and transmittance by theoretical calculation when EF varies in a certain range continuously based on the proposed structure.
Fig. 4
Fig. 4 (a)The simulant transmission spectra of the proposed structure when the graphene mobility is reduced from 3.0m2/Vs to 0.5m2/Vs. Here, EF of element B and element D is fixed at 1.0eV and 0.7eV, respectively; (b)The simulant absorption spectra when the mobility of graphene corresponds to the left transmission spectrum.
Fig. 5
Fig. 5 (a)-(f) Group refractive index and phase shift versus frequency, when the dark mode EF at 0.5eV, 0.6eV, 0.7eV, 0.8eV, 0.9eV, 1.0eV, respectively. Here, the EF of the bright radiation mode is fixed at 1.0eV and the graphene mobility defaults to 2.5m2/Vs.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( γ B i κ BD i κ DB γ D )( m B m D )=( τ eB 1 2 0 0 τ eD 1 2 )( B + in + B in D + in + D in )
Q iB(D) =Re( n eff )/Im( n eff )
1 Q tB(D) = 1 Q iB(D) + 1 Q eB(D)
D + in = B + out e iϕ , B in = D out e iϕ
B ± out = B ± in τ eB 1 2 m B , D ± out = D ± in τ eD 1 2 m D
tr= D + out B + in = e iϕ +[ τ eB 1 γ D e iϕ + τ eD 1 e iϕ γ B + ( τ eB τ eD ) 1 2 e 2jϕ χ B + ( τ eB τ eD ) 1 2 χ D ] ( γ B γ D χ B χ D ) 1
re= B out B + in =[ τ eB 1 γ D + τ eD 1 e 2jϕ γ B + ( τ eB τ eD ) 1 2 e jϕ χ B + ( τ eB τ eD ) 1 2 e jϕ χ D ] ( γ B γ D χ B χ D ) 1
T= | tr | 2 ,A=1 | tr | 2 | re | 2
ε=1+iσ(ω)/( ε 0 ωt)
σ= i e 2 E F π 2 (ω+i τ 1 )
β= k 0 ε d ( 2 ε d η 0 σ ) 2
E F = v F ( π ε 0 ε d V g d c e ) 1 2
n g = c v g = c H τ g = c H dθ dω

Metrics