Abstract

We realized the generation of pulses with a 460 ps duration, 1% pulse duration stability, and 300 mJ pulsed energy in a gain-switched Ti: Sapphire laser. We show that a flattening of the pumping beam profile and an increase of pump fluence up to the threshold of second pulse generation are the main conditions to achieve pulses with minimum duration and maximum stability. The negative influence of pump nonuniformity on laser characteristics was also studied. The maximum pulse energy was restricted by available pump energy of the nanosecond Q-switched Nd: YAG laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impact of pump light spatial modulation on the generation of gain-switched sub-nanosecond Ti:Sapphire laser

Aleksandr Tarasov and Hong Chu
Opt. Express 27(11) 16250-16257 (2019)

Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser

Jihong Geng, Satoshi Wada, Yoshiharu Urata, and Hideo Tashiro
Opt. Lett. 24(10) 676-678 (1999)

Efficient pulsed 946-nm laser emission from Nd:YAG pumped by a titanium-doped sapphire laser

Yves Lutz, Olivier Musset, Jean Pierre Boquillon, and Antoine Hirth
Appl. Opt. 37(15) 3286-3289 (1998)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Harter, O. Montoya, J. Squire, and W. R. Rapoport, “Short pulse generation from Ti: doped materials,” Digest of Conference on Lasers and Electrooptics (Optical Society of America, Washington D. C., 1988), p. 466.
  2. J. J. Zayhowski, J. Ochoa, and A. Mooradian, “Gain-switched pulsed operation of microchip lasers,” Opt. Lett. 14(23), 1318–1320 (1989).
    [Crossref] [PubMed]
  3. J. J. Zayhowski, S. C. Buchter, and A. L. Wilson, “Miniature gain-switched lasers,” in OSA TOPS 50, Advanced Solis State Lasers, C. Marshall, ed. (Optical Society of America, Washington, D. C., 2001), pp. 462–469.
  4. M. A. Adatto, R. Amir, J. Bhawalkar, R. Sierra, R. Bankowski, D. Rozen, C. Dierickx, and M. Lapidoth, “New and advanced picosecond lasers for tattoo removal,” in Diagnosis and Therapy of Tattoo Complications, J. Serup, W. Baumler and G. B. E. Jemek, ed. (Karger, 2017), pp. 113–123.
  5. A. Tarasov and H. Chu, “Subnanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).
  6. R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
    [Crossref]
  7. M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
    [Crossref]
  8. J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators,” IEEE J. Quantum Electron. 24(6), 1009–1015 (1988).
    [Crossref]
  9. H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
    [Crossref]
  10. Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).
  11. S. Hwang, T. Kim, J. Lee, and T. J. Yu, “Design of square-shaped beam homogenizer for petawatt-class Ti:sapphire amplifier,” Opt. Express 25(9), 9511–9520 (2017).
    [Crossref] [PubMed]

2018 (1)

A. Tarasov and H. Chu, “Subnanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

2017 (1)

2014 (1)

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

2009 (1)

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

2008 (1)

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

2007 (1)

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

1989 (1)

1988 (1)

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators,” IEEE J. Quantum Electron. 24(6), 1009–1015 (1988).
[Crossref]

Bolton, P.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Chu, H.

A. Tarasov and H. Chu, “Subnanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

Daido, H.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

DeShazer, L. G.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators,” IEEE J. Quantum Electron. 24(6), 1009–1015 (1988).
[Crossref]

Eggleston, J. M.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators,” IEEE J. Quantum Electron. 24(6), 1009–1015 (1988).
[Crossref]

Ge, X.

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

Hwang, S.

Kanazawa, S.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Kangas, K. W.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators,” IEEE J. Quantum Electron. 24(6), 1009–1015 (1988).
[Crossref]

Kawanishi, S.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Kim, T.

Kiriyama, H.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Lee, J.

Li, Y.

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

Lindlein, N.

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Ma, J.

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

Mooradian, A.

Mori, M.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Nakai, Y.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Ochi, Y.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Ochoa, J.

Okada, H.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Sasao, H.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Shimomura, T.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Tanaka, M.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Tarasov, A.

A. Tarasov and H. Chu, “Subnanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

Voelkel, R.

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Wei, Z.

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

Weible, K. J.

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Yu, T. J.

Zayhowski, J. J.

Zhang, J.

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

Zheng, Y.

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

Zimmermann, M.

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Chi. Opt. Lett. (1)

Y. Zheng, J. Ma, X. Ge, Y. Li, Z. Wei, and J. Zhang, “A multipass Ti: sapphire laser amplifier pumped with homogenized Nd:YAG lasers,” Chi. Opt. Lett.,  12 (Suppl.), S21412 (2014).

IEEE J. Quantum Electron. (1)

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators,” IEEE J. Quantum Electron. 24(6), 1009–1015 (1988).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (3)

A. Tarasov and H. Chu, “Subnanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 71020J (2008).
[Crossref]

M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer – from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Rev. Las. Eng. (1)

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100-j level green laser beam homogenization to a pump petawatt class Ti: sapphire chirped-pulse amplification laser system,” Rev. Las. Eng. 37(6), 467–469 (2009).
[Crossref]

Other (3)

J. J. Zayhowski, S. C. Buchter, and A. L. Wilson, “Miniature gain-switched lasers,” in OSA TOPS 50, Advanced Solis State Lasers, C. Marshall, ed. (Optical Society of America, Washington, D. C., 2001), pp. 462–469.

M. A. Adatto, R. Amir, J. Bhawalkar, R. Sierra, R. Bankowski, D. Rozen, C. Dierickx, and M. Lapidoth, “New and advanced picosecond lasers for tattoo removal,” in Diagnosis and Therapy of Tattoo Complications, J. Serup, W. Baumler and G. B. E. Jemek, ed. (Karger, 2017), pp. 113–123.

D. J. Harter, O. Montoya, J. Squire, and W. R. Rapoport, “Short pulse generation from Ti: doped materials,” Digest of Conference on Lasers and Electrooptics (Optical Society of America, Washington D. C., 1988), p. 466.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical scheme of the Ti: Sapphire laser. Here, 1 is the microlens array, 2 is the condenser lens, 3 and 5 are pump and output mirrors, and 4 is the Ti: Sapphire active crystal.
Fig. 2
Fig. 2 Pump laser beam 2-D pattern (left) and beam profile (right) before the homogenizer.
Fig. 3
Fig. 3 Dependences of the pulse duration T on pump fluence WPUMP for pump spot 3.4 × 3.4 mm (a) and 5.6 × 5.6 mm (b).
Fig. 4
Fig. 4 Dependence of E on EPUMP: (a) – pump spot 3.4 × 3.4 mm, L = 7.5 mm; (b) – pump spot 5.6 × 5.6 mm, L = 7.2 mm.
Fig. 5
Fig. 5 2-D pattern (left) and beam profile (right) of the 532 nm pumping beam spot after MLA in the focal plane of the condenser lens.
Fig. 6
Fig. 6 Laser spot pattern at the output mirror (left) and horizontal beam profile (right), recorded when the distance between the condenser lens and Ti: Sapphire crystal is ~0.8 F.
Fig. 7
Fig. 7 The appearance of “satellite” pulses. The yellow line shows the pump pulse, and the green line shows the Ti: Sapphire laser pulses.
Fig. 8
Fig. 8 Reduction of laser pulse duration by mirror misalignment: left – oscillogram of the laser pulse, when misalignment is minimum, and laser pulse energy is maximum; right – the same, when the output mirror was 0.6 mrad tilted. Here, the pulse energy is 0.9 of the maximum value.

Tables (1)

Tables Icon

Table 1 Characteristics of Ti: Sapphire laser generation

Metrics