Abstract

Knowing the cloud thermodynamic phase (if a cloud is composed of ice crystals or liquid droplets) is crucial for many cloud remote sensing measurements. Further, this knowledge can help in simulating and interpreting cloud radiation measurements to better understand the role of clouds in climate, weather, and optical propagation. Knobelspiesse et al. [Atmos. Meas. Tech. 8, 1537 (2015) [CrossRef]  ] showed that, for simulated zenith observations, the algebraic sign of the S1 Stokes parameter (related to the difference between perpendicular and parallel linear polarization in the scattering plane) can be used to detect cloud thermodynamic phase when observed with a ground-based passive polarimeter. In this paper, we describe the use of our all-sky imaging polarimeter to experimentally test this proposed method of detecting cloud thermodynamic phase in the entire sky dome. The zenith cloud phase was validated with a dual-polarization lidar instrument.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The Effect of Cirrus Clouds on 8–13-μ Infrared Sky Radiance

Freeman F. Hall
Appl. Opt. 7(5) 891-898 (1968)

Digital all-sky polarization imaging of partly cloudy skies

Nathan J. Pust and Joseph A. Shaw
Appl. Opt. 47(34) H190-H198 (2008)

Reflective all-sky thermal infrared cloud imager

Brian J. Redman, Joseph A. Shaw, Paul W. Nugent, R. Trevor Clark, and Sabino Piazzolla
Opt. Express 26(9) 11276-11283 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
    [Crossref] [PubMed]
  2. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S. K. Satheesh, S. Sherwood, B. Stevens, and X. Y. Zhang, 2013: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (Cambridge University, 2013).
  3. W. B. Rossow and R. A. Schiffer, “Advances in Understanding Clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80(11), 2261–2287 (1999).
    [Crossref]
  4. A. Deepak, U. O. Farrukh, and A. Zardecki, “Significance of higher-order multiple scattering for laser beam propagation through hazes, fogs, and clouds,” Appl. Opt. 21(3), 439–447 (1982).
    [Crossref] [PubMed]
  5. S. Arnon and N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36(9), 1987–1993 (1997).
    [Crossref] [PubMed]
  6. S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Optical imaging through clouds and fog,” IEEE Trans. Geosci. Remote Sens. 41(8), 1834–1843 (2003).
    [Crossref]
  7. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
    [Crossref]
  8. S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41(8), 1591–1605 (1994).
    [Crossref]
  9. S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).
    [Crossref]
  10. J. R. Key and J. M. Intrieri, “Cloud Particle Phase Determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
    [Crossref]
  11. S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
    [Crossref]
  12. J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
    [Crossref]
  13. K. Sassen, “The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
    [Crossref]
  14. N. L. Seldomridge, J. A. Shaw, and K. S. Repasky, “Dual-polarization lidar using a liquid crystal variable retarder,” OPTICE 45(10), 106202 (2006).
    [Crossref]
  15. R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
    [Crossref]
  16. A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
    [Crossref]
  17. S. M. Sekelsky and R. E. McIntosh, “Cloud observations with a polarimetric 33 GHz and 95 GHz radar,” Meteorol. Atmos. Phys. 59(1-2), 123–140 (1996).
    [Crossref]
  18. M. S. Norgren, G. deBoer, and M. D. Shupe, “Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds,” Atmos. Chem. Phys. 18(18), 13345–13361 (2018).
    [Crossref]
  19. K. I. Strabala, S. A. Ackerman, and W. P. Menzel, “Cloud properties inferred from 8 μm –12-μm data,” J. Appl. Meteorol. 33(2), 212–229 (1994).
    [Crossref]
  20. J. R. Key and J. M. Intrieri, “Cloud particle phase determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
    [Crossref]
  21. D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
    [Crossref]
  22. B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
    [Crossref]
  23. W. H. Knap, P. Stammes, and R. B. A. Koelemeijer, “Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight,” J. Atmos. Sci. 59(1), 83–96 (2002).
    [Crossref]
  24. P. Pilewskie and S. Twomey, “Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm,” J. Atmos. Sci. 44(22), 3419–3420 (1987).
    [Crossref]
  25. P. Pilewskie and S. Twomey, “Discrimination of ice from water in clouds by optical remote sensing,” Atmos. Res. 21(2), 113–122 (1987).
    [Crossref]
  26. M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
    [Crossref]
  27. J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
    [Crossref]
  28. K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
    [Crossref]
  29. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
    [Crossref] [PubMed]
  30. A. R. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory,” Opt. Express 19(17), 16008–16021 (2011).
    [Crossref] [PubMed]
  31. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
    [Crossref] [PubMed]
  32. N. J. Pust, A. R. Dahlberg, M. J. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express 19(19), 18602–18613 (2011).
    [Crossref] [PubMed]
  33. N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20(14), 15559–15568 (2012).
    [Crossref] [PubMed]
  34. L. M. Eshelman and J. A. Shaw, “The VIS-SWIR spectrum of skylight polarization,” Appl. Opt. 57(27), 7974–7986 (2018).
    [Crossref] [PubMed]
  35. G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
    [Crossref] [PubMed]
  36. M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
    [Crossref]
  37. N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
    [Crossref]
  38. L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).
  39. J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672, 76720A (2010).
    [Crossref]
  40. M. D. Shupe, “A ground-based multisensor cloud phase classifier,” Geophys. Res. Lett. 34(22), L22809 (2007).
    [Crossref]
  41. E. W. Eloranta, High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, (Springer-Verlag, 2005).

2018 (5)

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

M. S. Norgren, G. deBoer, and M. D. Shupe, “Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds,” Atmos. Chem. Phys. 18(18), 13345–13361 (2018).
[Crossref]

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

L. M. Eshelman and J. A. Shaw, “The VIS-SWIR spectrum of skylight polarization,” Appl. Opt. 57(27), 7974–7986 (2018).
[Crossref] [PubMed]

2017 (1)

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

2015 (1)

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

2012 (3)

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20(14), 15559–15568 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672, 76720A (2010).
[Crossref]

2008 (1)

2007 (1)

M. D. Shupe, “A ground-based multisensor cloud phase classifier,” Geophys. Res. Lett. 34(22), L22809 (2007).
[Crossref]

2006 (2)

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
[Crossref] [PubMed]

N. L. Seldomridge, J. A. Shaw, and K. S. Repasky, “Dual-polarization lidar using a liquid crystal variable retarder,” OPTICE 45(10), 106202 (2006).
[Crossref]

2004 (1)

N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
[Crossref]

2003 (4)

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Optical imaging through clouds and fog,” IEEE Trans. Geosci. Remote Sens. 41(8), 1834–1843 (2003).
[Crossref]

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

2002 (4)

W. H. Knap, P. Stammes, and R. B. A. Koelemeijer, “Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight,” J. Atmos. Sci. 59(1), 83–96 (2002).
[Crossref]

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).
[Crossref]

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
[Crossref] [PubMed]

2000 (3)

J. R. Key and J. M. Intrieri, “Cloud particle phase determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

J. R. Key and J. M. Intrieri, “Cloud Particle Phase Determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

1999 (1)

W. B. Rossow and R. A. Schiffer, “Advances in Understanding Clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80(11), 2261–2287 (1999).
[Crossref]

1997 (1)

1996 (1)

S. M. Sekelsky and R. E. McIntosh, “Cloud observations with a polarimetric 33 GHz and 95 GHz radar,” Meteorol. Atmos. Phys. 59(1-2), 123–140 (1996).
[Crossref]

1994 (2)

K. I. Strabala, S. A. Ackerman, and W. P. Menzel, “Cloud properties inferred from 8 μm –12-μm data,” J. Appl. Meteorol. 33(2), 212–229 (1994).
[Crossref]

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41(8), 1591–1605 (1994).
[Crossref]

1991 (1)

K. Sassen, “The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

1989 (1)

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

1987 (2)

P. Pilewskie and S. Twomey, “Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm,” J. Atmos. Sci. 44(22), 3419–3420 (1987).
[Crossref]

P. Pilewskie and S. Twomey, “Discrimination of ice from water in clouds by optical remote sensing,” Atmos. Res. 21(2), 113–122 (1987).
[Crossref]

1982 (1)

Abel, A. M.

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

Ackerman, S. A.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

K. I. Strabala, S. A. Ackerman, and W. P. Menzel, “Cloud properties inferred from 8 μm –12-μm data,” J. Appl. Meteorol. 33(2), 212–229 (1994).
[Crossref]

Ahmad, E.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Arnon, S.

S. Arnon and N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36(9), 1987–1993 (1997).
[Crossref] [PubMed]

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41(8), 1591–1605 (1994).
[Crossref]

Barkstrom, B. R.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Barta, A.

Baum, B. A.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

Baumbauer, C. L.

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

Boutou, V.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Breon, F. M.

N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
[Crossref]

Cazorla, A.

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

Cess, R. D.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Chepfer, H.

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

Chiu, J. C.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Chow, C. W.

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

Courvoisier, F.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Dahlberg, A. R.

Daniel, J. S.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

deBoer, G.

M. S. Norgren, G. deBoer, and M. D. Shupe, “Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds,” Atmos. Chem. Phys. 18(18), 13345–13361 (2018).
[Crossref]

Deepak, A.

Dunagan, S.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

Dutton, E. G.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

Eshelman, L. M.

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

L. M. Eshelman and J. A. Shaw, “The VIS-SWIR spectrum of skylight polarization,” Appl. Opt. 57(27), 7974–7986 (2018).
[Crossref] [PubMed]

Eubank, C. S.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

Farrukh, U. O.

Frey, R. A.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

Gál, J.

Ghonima, M. S.

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

Giles, D. M.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Gillis, K.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Guzman, R.

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

Haiman, O.

Harrison, E. F.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Hartmann, D.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Hashimoto, T.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Hogan, R. J.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Holben, B.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

Holben, B. N.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Hooser, P.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Horváth, G.

Huang, C. H.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Intrieri, J. M.

J. R. Key and J. M. Intrieri, “Cloud Particle Phase Determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

J. R. Key and J. M. Intrieri, “Cloud particle phase determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

Ishimaru, A.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Optical imaging through clouds and fog,” IEEE Trans. Geosci. Remote Sens. 41(8), 1834–1843 (2003).
[Crossref]

Jaruwatanadilok, S.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Optical imaging through clouds and fog,” IEEE Trans. Geosci. Remote Sens. 41(8), 1834–1843 (2003).
[Crossref]

Johnson, J.

J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672, 76720A (2010).
[Crossref]

Kasparian, J.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Kay, J.

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

Key, J. R.

J. R. Key and J. M. Intrieri, “Cloud particle phase determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

J. R. Key and J. M. Intrieri, “Cloud Particle Phase Determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

King, M. D.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

Kleissl, J.

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

Knap, W. H.

W. H. Knap, P. Stammes, and R. B. A. Koelemeijer, “Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight,” J. Atmos. Sci. 59(1), 83–96 (2002).
[Crossref]

Knobelspiesse, K.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

Knyazikhin, Y.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Koelemeijer, R. B. A.

W. H. Knap, P. Stammes, and R. B. A. Koelemeijer, “Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight,” J. Atmos. Sci. 59(1), 83–96 (2002).
[Crossref]

Kopeika, N. S.

S. Arnon and N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36(9), 1987–1993 (1997).
[Crossref] [PubMed]

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41(8), 1591–1605 (1994).
[Crossref]

Kuga, Y.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Optical imaging through clouds and fog,” IEEE Trans. Geosci. Remote Sens. 41(8), 1834–1843 (2003).
[Crossref]

Lacour, A.

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

Langford, A. O.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

Madsen, W.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

Marshak, A.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

McIntosh, R. E.

S. M. Sekelsky and R. E. McIntosh, “Cloud observations with a polarimetric 33 GHz and 95 GHz radar,” Meteorol. Atmos. Phys. 59(1-2), 123–140 (1996).
[Crossref]

Mejean, G.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Menzel, W. P.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

K. I. Strabala, S. A. Ackerman, and W. P. Menzel, “Cloud properties inferred from 8 μm –12-μm data,” J. Appl. Meteorol. 33(2), 212–229 (1994).
[Crossref]

Miller, N. B.

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

Minnis, P.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Moon, B.

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

Nakagawa, W.

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

Neely, R. R.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

Noel, V.

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

Norgren, M. S.

M. S. Norgren, G. deBoer, and M. D. Shupe, “Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds,” Atmos. Chem. Phys. 18(18), 13345–13361 (2018).
[Crossref]

O’Connor, E. J.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Piazzolla, S.

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).
[Crossref]

Pilewskie, P.

P. Pilewskie and S. Twomey, “Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm,” J. Atmos. Sci. 44(22), 3419–3420 (1987).
[Crossref]

P. Pilewskie and S. Twomey, “Discrimination of ice from water in clouds by optical remote sensing,” Atmos. Res. 21(2), 113–122 (1987).
[Crossref]

Platnick, S.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

Portmann, R. W.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

Pust, N. J.

Ramanathan, V.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Repasky, K. S.

N. L. Seldomridge, J. A. Shaw, and K. S. Repasky, “Dual-polarization lidar using a liquid crystal variable retarder,” OPTICE 45(10), 106202 (2006).
[Crossref]

Revercomb, H. E.

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

Riedi, J. C.

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

Riesland, D. W.

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

Rossow, W. B.

W. B. Rossow and R. A. Schiffer, “Advances in Understanding Clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80(11), 2261–2287 (1999).
[Crossref]

Sadot, D.

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41(8), 1591–1605 (1994).
[Crossref]

Salmon, E.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Sassen, K.

K. Sassen, “The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

Schiffer, R. A.

W. B. Rossow and R. A. Schiffer, “Advances in Understanding Clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80(11), 2261–2287 (1999).
[Crossref]

Schutgens, N. A. J.

N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
[Crossref]

Sekelsky, S. M.

S. M. Sekelsky and R. E. McIntosh, “Cloud observations with a polarimetric 33 GHz and 95 GHz radar,” Meteorol. Atmos. Phys. 59(1-2), 123–140 (1996).
[Crossref]

Seldomridge, N. L.

N. L. Seldomridge, J. A. Shaw, and K. S. Repasky, “Dual-polarization lidar using a liquid crystal variable retarder,” OPTICE 45(10), 106202 (2006).
[Crossref]

Shaw, G. E.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Shaw, J. A.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

L. M. Eshelman and J. A. Shaw, “The VIS-SWIR spectrum of skylight polarization,” Appl. Opt. 57(27), 7974–7986 (2018).
[Crossref] [PubMed]

N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20(14), 15559–15568 (2012).
[Crossref] [PubMed]

N. J. Pust, A. R. Dahlberg, M. J. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express 19(19), 18602–18613 (2011).
[Crossref] [PubMed]

A. R. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory,” Opt. Express 19(17), 16008–16021 (2011).
[Crossref] [PubMed]

J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672, 76720A (2010).
[Crossref]

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
[Crossref] [PubMed]

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
[Crossref] [PubMed]

N. L. Seldomridge, J. A. Shaw, and K. S. Repasky, “Dual-polarization lidar using a liquid crystal variable retarder,” OPTICE 45(10), 106202 (2006).
[Crossref]

Shields, J. E.

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

Shupe, M. D.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

M. S. Norgren, G. deBoer, and M. D. Shupe, “Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds,” Atmos. Chem. Phys. 18(18), 13345–13361 (2018).
[Crossref]

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

M. D. Shupe, “A ground-based multisensor cloud phase classifier,” Geophys. Res. Lett. 34(22), L22809 (2007).
[Crossref]

Slobin, S.

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).
[Crossref]

Slutsker, I.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

Solomon, S.

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

Soulen, P. F.

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

Staal, B.

J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672, 76720A (2010).
[Crossref]

Stammes, P.

N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
[Crossref]

W. H. Knap, P. Stammes, and R. B. A. Koelemeijer, “Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight,” J. Atmos. Sci. 59(1), 83–96 (2002).
[Crossref]

Stanley, B.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Stillwell, R. A.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

Strabala, K. I.

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

K. I. Strabala, S. A. Ackerman, and W. P. Menzel, “Cloud properties inferred from 8 μm –12-μm data,” J. Appl. Meteorol. 33(2), 212–229 (1994).
[Crossref]

Suhai, B.

Tauc, M. J.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

Thayer, J. P.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

Thomas, M. J.

Tilstra, L. G.

N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
[Crossref]

Turner, D. D.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

Twomey, S.

P. Pilewskie and S. Twomey, “Discrimination of ice from water in clouds by optical remote sensing,” Atmos. Res. 21(2), 113–122 (1987).
[Crossref]

P. Pilewskie and S. Twomey, “Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm,” J. Atmos. Sci. 44(22), 3419–3420 (1987).
[Crossref]

Urquhart, B.

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

van Diedenhoven, B.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

Várnai, T.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Weiss, W.

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Wiscombe, W. J.

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

Wolf, J. P.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Yang, P.

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

Yu, J.

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Zardecki, A.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J. P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett. 83(2), 213–215 (2003).
[Crossref]

Atmos. Chem. Phys. (2)

J. C. Chiu, A. Marshak, C. H. Huang, T. Várnai, R. J. Hogan, D. M. Giles, B. N. Holben, E. J. O’Connor, Y. Knyazikhin, and W. J. Wiscombe, “Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network,” Atmos. Chem. Phys. 12, 10313–10329 (2012).
[Crossref]

M. S. Norgren, G. deBoer, and M. D. Shupe, “Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds,” Atmos. Chem. Phys. 18(18), 13345–13361 (2018).
[Crossref]

Atmos. Meas. Tech. (2)

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11(2), 835–859 (2018).
[Crossref]

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8(3), 1537–1554 (2015).
[Crossref]

Atmos. Meas. Tech. Discuss. (1)

M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl, “A method for cloud detection and opacity classification based on ground based sky imagery,” Atmos. Meas. Tech. Discuss. 5(4), 4535–4569 (2012).
[Crossref]

Atmos. Res. (1)

P. Pilewskie and S. Twomey, “Discrimination of ice from water in clouds by optical remote sensing,” Atmos. Res. 21(2), 113–122 (1987).
[Crossref]

Bull. Am. Meteorol. Soc. (2)

K. Sassen, “The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

W. B. Rossow and R. A. Schiffer, “Advances in Understanding Clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80(11), 2261–2287 (1999).
[Crossref]

Geophys. Res. Lett. (1)

M. D. Shupe, “A ground-based multisensor cloud phase classifier,” Geophys. Res. Lett. 34(22), L22809 (2007).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, “Optical imaging through clouds and fog,” IEEE Trans. Geosci. Remote Sens. 41(8), 1834–1843 (2003).
[Crossref]

S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, “The MODIS cloud products: algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41(2), 459–473 (2003).
[Crossref]

J. Appl. Meteorol. (4)

J. R. Key and J. M. Intrieri, “Cloud Particle Phase Determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

K. I. Strabala, S. A. Ackerman, and W. P. Menzel, “Cloud properties inferred from 8 μm –12-μm data,” J. Appl. Meteorol. 33(2), 212–229 (1994).
[Crossref]

J. R. Key and J. M. Intrieri, “Cloud particle phase determination with the AVHRR,” J. Appl. Meteorol. 39(10), 1797–1804 (2000).
[Crossref]

D. D. Turner, S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, “Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA,” J. Appl. Meteorol. 42(6), 701–715 (2003).
[Crossref]

J. Atmos. Sci. (2)

W. H. Knap, P. Stammes, and R. B. A. Koelemeijer, “Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight,” J. Atmos. Sci. 59(1), 83–96 (2002).
[Crossref]

P. Pilewskie and S. Twomey, “Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm,” J. Atmos. Sci. 44(22), 3419–3420 (1987).
[Crossref]

J. Clim. (1)

A. Lacour, H. Chepfer, M. D. Shupe, N. B. Miller, V. Noel, J. Kay, D. D. Turner, and R. Guzman, “Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations,” J. Clim. 30(15), 6065–6083 (2017).
[Crossref]

J. Geophys. Res. (3)

B. A. Baum, P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase,” J. Geophys. Res. 105(D9), 11781–11792 (2000).
[Crossref]

J. S. Daniel, S. Solomon, R. W. Portmann, A. O. Langford, C. S. Eubank, E. G. Dutton, and W. Madsen, “Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique,” J. Geophys. Res. 107(D21), 21 (2002).
[Crossref]

N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F. M. Breon, “On the relationship between Stokes parameters Q and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109(D9), D09205 (2004).
[Crossref]

J. Mod. Opt. (1)

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41(8), 1591–1605 (1994).
[Crossref]

Meteorol. Atmos. Phys. (1)

S. M. Sekelsky and R. E. McIntosh, “Cloud observations with a polarimetric 33 GHz and 95 GHz radar,” Meteorol. Atmos. Phys. 59(1-2), 123–140 (1996).
[Crossref]

Opt. Express (3)

OPTICE (1)

N. L. Seldomridge, J. A. Shaw, and K. S. Repasky, “Dual-polarization lidar using a liquid crystal variable retarder,” OPTICE 45(10), 106202 (2006).
[Crossref]

Proc. SPIE (3)

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).
[Crossref]

M. J. Tauc, C. L. Baumbauer, B. Moon, L. M. Eshelman, W. Nakagawa, J. A. Shaw, A. M. Abel, and D. W. Riesland, “Cloud thermodynamic phase detection with a 3-channel shortwave infrared polarimeter,” Proc. SPIE 10655, 24 (2018).
[Crossref]

J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672, 76720A (2010).
[Crossref]

Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing (1)

L. M. Eshelman, M. J. Tauc, T. Hashimoto, P. Hooser, K. Gillis, W. Weiss, B. Stanley, G. E. Shaw, and J. A. Shaw, “All-sky polarization measurements of the total solar eclipse on 21 August 2017, ” Proc. SPIE 10655, Polarization. Measurement, Analysis, and Remote Sensing XIII, 106550L (2018).

Science (1)

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment,” Science 243(4887), 57–63 (1989).
[Crossref] [PubMed]

Other (2)

O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S. K. Satheesh, S. Sherwood, B. Stevens, and X. Y. Zhang, 2013: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (Cambridge University, 2013).

E. W. Eloranta, High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, (Springer-Verlag, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 All-sky polarimeter S0, S1, DoLP and AoP images referenced to the scattering plane. The measured S1 values for the entire sky-dome indicate the presence of ice clouds on 25 October 2016, a liquid cloud on 28 August 2018, and multi-layered (ice and liquid) clouds on 5 July 2016. Negative values of S1 indicate ice and positive values of S1 indicate liquid cloud phase. A clear-sky on 15 February 2017 is representative of a Rayleigh atmosphere where positive values of S1 indicate linear polarization parallel to the scattering plane and negative values of S1 indicate linear polarization perpendicular to the scattering plane. For the all-sky images, the top of the image represents north and the right side of the image represents west.
Fig. 2
Fig. 2 Multi-wavelength all-sky polarimeter measurements validated with a dual-polarization lidar at the zenith. Liquid clouds are represented by the plus ( + ) symbols, ice clouds are represented by the unfilled circles (o), multi-phase clouds are represented by diamonds (♦). The 450, 490, 530, 670, and 780 nm measurements are represented by blue, cyan, green, red, and black colors, respectively. Ice clouds were generally found to have S1 values less than −0.04 (dashed line) and liquid clouds tended to be both positive and negative at larger scattering angles.
Fig. 3
Fig. 3 The observed relationship between the Stokes S1 parameter in the scattering plane and the lidar’s measured cross-polarization ratio at the zenith for each wavelength. Liquid clouds are represented by the red plus ( + ) symbols, ice clouds are represented by the blue, filled circles (o).
Fig. 4
Fig. 4 The observed relationship between the Stokes S1 parameter in the scattering plane at the zenith and the corresponding scattering angle for each wavelength.
Fig. 5
Fig. 5 The observed relationship between the Stokes S1 parameter in the scattering plane and the AOD retrieved from AERONET for each wavelength. An observed switch in the spectral dependence was observed for ice clouds at AOD values greater than 0.2. Below an AOD value of 0.2, the S1 value was greatest at shorter wavelengths. Above an AOD value of 0.2, the S1 value was greatest at longer wavelengths.
Fig. 6
Fig. 6 The observed variation with wavelength of the Stokes S1 parameter expressed relative to the scattering plane for a liquid cloud on 1 April 2016 for a solar zenith angle of 51°. Scattering angles of 100 and 70° are shown on the images with black lines.
Fig. 7
Fig. 7 All-sky polarimeter S1 images at 530 nm from 1 April 2016 and 31 July 2018 showing liquid and ice clouds for solar zenith angles of 51° and 63°, respectively. Scattering angles of 100 and 70° are shown on the images with black lines.
Fig. 8
Fig. 8 Example of cloud pixel masking using the S0 image to detect the presence of clouds, with corresponding masked cloud pixels in the S1, scattering angle, and zenith angle images.
Fig. 9
Fig. 9 The relationship between the measured cloud S1 values (referenced to the scattering plane) and scattering angle for liquid clouds on 1 April 2016 (top) and ice clouds on 31 July 2018 (bottom) at 530 nm. Ice clouds were generally found to have S1 values less than −0.04 (dashed line), where liquid clouds tended to be both positive and slightly negative. At scattering angles greater than 60°, liquid clouds were found to have S1 values less than −0.04, thus overlapping with the range of S1 values that would otherwise indicate ice clouds. The solar zenith angles were 51° and 63°, respectively.
Fig. 10
Fig. 10 The relationship between the measured cloud S1 values (referenced to the scattering plane) and zenith angle for liquid clouds on 1 April 2016 (top) and ice clouds (bottom) on 31 July 2018 at 530 nm. Ice clouds were generally found to have S1 values less than −0.04 (dashed line), where liquid clouds tended to be both positive and slightly negative. Liquid clouds tended to be more positive for zenith angles less than 25°. Ice clouds were negative for all zenith angles. The solar zenith angles were 51° and 63°, respectively.
Fig. 11
Fig. 11 DoLP, Stokes S1, and AoP images in the instrument plane (IP) and scattering plane (SP) from 1 April 2016 with solar azimuth angles of 171°, 218°, and 239° and zenith angles of 41°, 47°, and 57°, respectively. This figure demonstrates the importance of aligning the polarimeter’s reference frame to the scattering plane. In the polarimeter’s reference frame, both phases are detected depending on the scattering geometry whereas in the scattering plane, liquid phase is detected over the scattering angles of 100 and 70° (the lidar’s cross-polarization ratio was approximately 0.02 at a cloud height of 3.5 km (AGL), indicating liquid phase).
Fig. 12
Fig. 12 Red/blue wavelength validated all-sky polarimeter measurements with a dual-polarization lidar at the zenith. Liquid clouds are represented by the plus ( + ) symbols, ice clouds are represented by the unfilled circles (o), multi-phase clouds are represented by diamonds (♦). The 450 and 670 nm measurements are represented by blue and red colors, respectively.

Tables (1)

Tables Icon

Table 1 All-sky polarimeter (S1), dual-polarization lidar, and AERONET data. For each day, the time of measurement (UTC) as well as the solar zenith (Ze) angles were recorded (time notation: MMDD). Scattering angles in the principal plane (i.e. zenith measurement) correspond to the solar zenith angles. Angles in parentheses represent the zenith angle of cloud pixels measured off-axis. For each wavelength, the mean cloud phase retrieved from the polarimeter’s Stokes S1 image was recorded. Cloud phase measurements were validated using a dual-polarization lidar. The cross-polarization ratio (δ) indicates liquid (δ < 0.08) or ice (δ > 0.08) phase. The AERONET aerosol optical depth (AOD) corresponds to level 1.0 processed data at 500 nm. Missing values in the polarimetric measurements represent a time when the corresponding wavelengths were not measured. The measurement site latitude and longitude coordinates were 45.6667 and −111.0451, respectively.

Metrics