Abstract

Mode-locked oscillators with highly tunable output characteristics are desirable for a range of applications. Here, with a custom-made tunable filter, we demonstrate a carbon nanotube (CNT) mode-locked thulium fiber laser with widely tunable wavelength, spectral bandwidth, and pulse duration. The demonstrated laser’s wavelength tuning range reached 300 nm (from 1733 nm to 2033 nm), which is the widest-ever that was reported for rare-earth ion doped fiber oscillators in the near-infrared. At each wavelength, the pulse duration can be regulated by changing the filter’s bandwidth. For example, at ~1902 nm, the pulse duration can be adjusted from 0.9 ps to 6.4 ps (the corresponding output spectral bandwidth from 4.3 nm to 0.6 nm). Furthermore, we experimentally and numerically study the spectral evolution of the mode-locked laser in presence of a tunable filter, a topic that has not been thoroughly investigated for thulium-doped fiber lasers. The detailed dynamical change of the mode-locked spectra is presented and we observed gradual suppression of the Kelly sidebands as the filter’s bandwidth is reduced. Further, using the polarization-maintaiing (PM) cavity ensures that the laser is stable and the output laser’s polarization extinction ratio is measured to exceed 20 dB.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
1867–2010 nm tunable femtosecond thulium-doped all-fiber laser

Biao Sun, Jiaqi Luo, Zhiyu Yan, Kun Liu, Junhua Ji, Ying Zhang, Qi Jie Wang, and Xia Yu
Opt. Express 25(8) 8997-9002 (2017)

All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120  nm tuning range

Zhuo Xu, Zhi-Yuan Dou, Jing Hou, and Xiao-Jun Xu
Appl. Opt. 56(21) 5978-5981 (2017)

Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser

Ya Liu, Xin Zhao, Jiansheng Liu, Guoqing Hu, Zheng Gong, and Zheng Zheng
Opt. Express 22(17) 21012-21017 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 26-61µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046 (2012).
    [Crossref] [PubMed]
  2. D. Sánchez, M. Hemmer, M. Baudisch, K. Zawilski, P. Schunemann, H. Hoogland, R. Holzwarth, and J. Biegert, “Broadband mid-IR frequency comb with CdSiP2 and AgGaS2 from an Er,Tm:Ho fiber laser,” Opt. Lett. 39(24), 6883–6886 (2014).
    [Crossref] [PubMed]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  4. S. A. Studenikin and M. Cocivera, “Time-resolved luminescence and photoconductivity of polycrystalline ZnO films,” J. Appl. Phys. 91(8), 5060–5065 (2002).
    [Crossref]
  5. Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
    [Crossref]
  6. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [Crossref] [PubMed]
  7. Y. Liu, X. Zhao, J. Liu, G. Hu, Z. Gong, and Z. Zheng, “Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser,” Opt. Express 22(17), 21012–21017 (2014).
    [Crossref] [PubMed]
  8. Z. Yan, H. Wang, K. Zhou, Y. Wang, C. Li, W. Zhao, and L. Zhang, “Soliton mode locking fiber laser with an all-fiber polarization interference filter,” Opt. Lett. 37(21), 4522–4524 (2012).
    [Crossref] [PubMed]
  9. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  10. D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
    [Crossref] [PubMed]
  11. N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
    [Crossref]
  12. G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
    [Crossref]
  13. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  14. G. P. Agrawal, “Applications of Nonlinear Fiber Optics,” Fourth ed., (Academic Press, Boston, 2007).
  15. F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
    [Crossref]
  16. Z. Xu, Z. Y. Dou, J. Hou, and X. J. Xu, “All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120 nm tuning range,” Appl. Opt. 56(21), 5978–5981 (2017).
    [Crossref] [PubMed]
  17. Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range,” Sci. Rep. 7(1), 45109 (2017).
    [Crossref] [PubMed]
  18. R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
    [Crossref]
  19. Y. T. Lin and G. R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31(10), 1382–1384 (2006).
    [Crossref] [PubMed]
  20. M. Wang, H. Zhang, R. Wei, Z. Zhu, S. Ruan, P. Yan, J. Wang, T. Hasan, and Z. Sun, “172 fs, 24.3 kW peak power pulse generation from a Ho-doped fiber laser system,” Opt. Lett. 43(19), 4619–4622 (2018).
    [Crossref] [PubMed]
  21. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  22. W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
    [Crossref]
  23. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
    [Crossref]
  24. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  25. F. Wang, F. Torrisi, Z. Jiang, D. Popa, T. Hasan, Z. Sun, W. Cho, and A. C. Ferrari, “Graphene passively Qswitched two-micron fiber lasers,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, San Jose, California, 2012), P. JW2A.72.
  26. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
    [Crossref]
  27. Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
    [Crossref]
  28. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [Crossref] [PubMed]
  29. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  30. F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
    [Crossref]
  31. V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
    [Crossref]
  32. W. Li, T. Du, J. Lan, C. Guo, Y. Cheng, H. Xu, C. Zhu, F. Wang, Z. Luo, and Z. Cai, “716 nm deep-red passively Q-switched Pr:ZBLAN all-fiber laser using a carbon-nanotube saturable absorber,” Opt. Lett. 42(4), 671–674 (2017).
    [Crossref] [PubMed]
  33. S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
    [Crossref] [PubMed]
  34. S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, “Average soliton dynamics of a high-gain erbium fiber laser,” Opt. Lett. 16(17), 1337–1339 (1991).
    [Crossref] [PubMed]
  35. N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
    [Crossref]
  36. D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett. 29(25), 2200–2201 (1993).
    [Crossref]
  37. Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
    [Crossref]
  38. http://www.fiberdesk.com/ .

2018 (5)

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

M. Wang, H. Zhang, R. Wei, Z. Zhu, S. Ruan, P. Yan, J. Wang, T. Hasan, and Z. Sun, “172 fs, 24.3 kW peak power pulse generation from a Ho-doped fiber laser system,” Opt. Lett. 43(19), 4619–4622 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (5)

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

2012 (5)

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 26-61µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046 (2012).
[Crossref] [PubMed]

Z. Yan, H. Wang, K. Zhou, Y. Wang, C. Li, W. Zhao, and L. Zhang, “Soliton mode locking fiber laser with an all-fiber polarization interference filter,” Opt. Lett. 37(21), 4522–4524 (2012).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

2010 (1)

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

2009 (1)

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

2008 (3)

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

2007 (1)

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

2006 (1)

2002 (1)

S. A. Studenikin and M. Cocivera, “Time-resolved luminescence and photoconductivity of polycrystalline ZnO films,” J. Appl. Phys. 91(8), 5060–5065 (2002).
[Crossref]

1994 (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

1993 (1)

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett. 29(25), 2200–2201 (1993).
[Crossref]

1992 (2)

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
[Crossref]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

1991 (1)

Albrow-Owen, T.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Bai, J.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Bao, Q. L.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Baudisch, M.

Biegert, J.

Blow, K. J.

Byer, R. L.

C. T. Howe, R.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Cai, Z.

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Chen, L. B.

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Chen, W.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Chen, W. C.

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Chen, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Cheng, Y.

Cheng, Z.

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

Cocivera, M.

S. A. Studenikin and M. Cocivera, “Time-resolved luminescence and photoconductivity of polycrystalline ZnO films,” J. Appl. Phys. 91(8), 5060–5065 (2002).
[Crossref]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Doran, N. J.

Dou, Z. Y.

Du, T.

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Feng, Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Fermann, M.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Gao, X. J.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Gao, Y.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Ge, Y.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Goda, K.

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

Gong, Z.

Guo, C.

Guo, G.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Guo, Z.

Han, D. A.

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hartl, I.

Hasan, T.

M. Wang, H. Zhang, R. Wei, Z. Zhu, S. Ruan, P. Yan, J. Wang, T. Hasan, and Z. Sun, “172 fs, 24.3 kW peak power pulse generation from a Ho-doped fiber laser system,” Opt. Lett. 43(19), 4619–4622 (2018).
[Crossref] [PubMed]

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

He, H.

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Hemmer, M.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Holzwarth, R.

Hoogland, H.

Hou, J.

Howe, R. C.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Hu, G.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Y. Liu, X. Zhao, J. Liu, G. Hu, Z. Gong, and Z. Zheng, “Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser,” Opt. Express 22(17), 21012–21017 (2014).
[Crossref] [PubMed]

Jackson, S. D.

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jia, Z. X.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Jiang, J.

Jiang, X.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jussila, H.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Kelleher, E.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Kelly, S. M. J.

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
[Crossref]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, “Average soliton dynamics of a high-gain erbium fiber laser,” Opt. Lett. 16(17), 1337–1339 (1991).
[Crossref] [PubMed]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Lan, J.

Leindecker, N.

Li, C.

Li, D.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Li, J.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Li, N.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Li, W.

Li, X.

Li, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range,” Sci. Rep. 7(1), 45109 (2017).
[Crossref] [PubMed]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liang, Z.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Lin, G. R.

Lin, Y. T.

Liu, J.

Liu, K.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Liu, M. Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, W.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Liu, Y.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Y. Liu, X. Zhao, J. Liu, G. Hu, Z. Gong, and Z. Zheng, “Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser,” Opt. Express 22(17), 21012–21017 (2014).
[Crossref] [PubMed]

Liu, Y. G.

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Liu, Z. B.

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Loh, K. P.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Lou, J. C.

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Lu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Lu, S.

Luo, A.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Luo, Z.

W. Li, T. Du, J. Lan, C. Guo, Y. Cheng, H. Xu, C. Zhu, F. Wang, Z. Luo, and Z. Cai, “716 nm deep-red passively Q-switched Pr:ZBLAN all-fiber laser using a carbon-nanotube saturable absorber,” Opt. Lett. 42(4), 671–674 (2017).
[Crossref] [PubMed]

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Ma, J.

Majewski, M. R.

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

Marandi, A.

Meng, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range,” Sci. Rep. 7(1), 45109 (2017).
[Crossref] [PubMed]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Noske, D. U.

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett. 29(25), 2200–2201 (1993).
[Crossref]

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
[Crossref]

Ohishi, Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Pandit, N.

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Ponraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Qin, C.

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

Qin, G. S.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Qin, W. P.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Ren, Z.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Ruan, S.

Sánchez, D.

Scardaci, V.

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schunemann, P.

Schunemann, P. G.

Shen, M. C.

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Shi, Y.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Shum, P. P.

Smith, K.

Song, C.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Song, F.

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Song, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Studenikin, S. A.

S. A. Studenikin and M. Cocivera, “Time-resolved luminescence and photoconductivity of polycrystalline ZnO films,” J. Appl. Phys. 91(8), 5060–5065 (2002).
[Crossref]

Sun, Z.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

M. Wang, H. Zhang, R. Wei, Z. Zhu, S. Ruan, P. Yan, J. Wang, T. Hasan, and Z. Sun, “172 fs, 24.3 kW peak power pulse generation from a Ho-doped fiber laser system,” Opt. Lett. 43(19), 4619–4622 (2018).
[Crossref] [PubMed]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

Tan, P. H.

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Tang, D.

Tang, D. Y.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Tang, J.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Tang, Y.

Taylor, J. R.

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett. 29(25), 2200–2201 (1993).
[Crossref]

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
[Crossref]

Vodopyanov, K. L.

Wang, F.

W. Li, T. Du, J. Lan, C. Guo, Y. Cheng, H. Xu, C. Zhu, F. Wang, Z. Luo, and Z. Cai, “716 nm deep-red passively Q-switched Pr:ZBLAN all-fiber laser using a carbon-nanotube saturable absorber,” Opt. Lett. 42(4), 671–674 (2017).
[Crossref] [PubMed]

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range,” Sci. Rep. 7(1), 45109 (2017).
[Crossref] [PubMed]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Z. Yan, H. Wang, K. Zhou, Y. Wang, C. Li, W. Zhao, and L. Zhang, “Soliton mode locking fiber laser with an all-fiber polarization interference filter,” Opt. Lett. 37(21), 4522–4524 (2012).
[Crossref] [PubMed]

Wang, J.

Wang, M.

Wang, Q. J.

Wang, Y.

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Z. Yan, H. Wang, K. Zhou, Y. Wang, C. Li, W. Zhao, and L. Zhang, “Soliton mode locking fiber laser with an all-fiber polarization interference filter,” Opt. Lett. 37(21), 4522–4524 (2012).
[Crossref] [PubMed]

Wang, Z.

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Wang, Z. H.

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Wei, R.

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S.

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Woodward, R. I.

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Xu, H.

Xu, S.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Xu, W.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Xu, W. C.

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Xu, X.

Xu, X. J.

Xu, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range,” Sci. Rep. 7(1), 45109 (2017).
[Crossref] [PubMed]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Xu, Z.

Yan, P.

Yan, Z.

Yang, G.

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Yu, X.

Zawilski, K.

Zhang, F.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Zhang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

M. Wang, H. Zhang, R. Wei, Z. Zhu, S. Ruan, P. Yan, J. Wang, T. Hasan, and Z. Sun, “172 fs, 24.3 kW peak power pulse generation from a Ho-doped fiber laser system,” Opt. Lett. 43(19), 4619–4622 (2018).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zhang, L.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Z. Yan, H. Wang, K. Zhou, Y. Wang, C. Li, W. Zhao, and L. Zhang, “Soliton mode locking fiber laser with an all-fiber polarization interference filter,” Opt. Lett. 37(21), 4522–4524 (2012).
[Crossref] [PubMed]

Zhang, R.

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhao, C.

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Zhao, L. M.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zhao, W.

Zhao, X.

Zheng, Z.

Zhou, K.

Zhu, C.

W. Li, T. Du, J. Lan, C. Guo, Y. Cheng, H. Xu, C. Zhu, F. Wang, Z. Luo, and Z. Cai, “716 nm deep-red passively Q-switched Pr:ZBLAN all-fiber laser using a carbon-nanotube saturable absorber,” Opt. Lett. 42(4), 671–674 (2017).
[Crossref] [PubMed]

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Zhu, S.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Zhu, Z.

APL Photonics (1)

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Electron. Lett. (3)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28(5), 455–457 (1992).
[Crossref]

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett. 29(25), 2200–2201 (1993).
[Crossref]

Eur. Phys. J. D (1)

W. C. Chen, W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Front Optoelectron. (1)

Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications,” Front Optoelectron. 9(2), 259–269 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

IEEE Photonics J. (1)

Z. Wang, Y. Chen, C. Zhao, H. Zhang, and S. Wen, “Switchable dual-wavelength synchronously Q-switched Erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

J. Appl. Phys. (1)

S. A. Studenikin and M. Cocivera, “Time-resolved luminescence and photoconductivity of polycrystalline ZnO films,” J. Appl. Phys. 91(8), 5060–5065 (2002).
[Crossref]

Laser Photonics Rev. (2)

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH) nanosheets,” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photonics Rev. 12(1), 1700221 (2018).
[Crossref]

Laser Phys. Lett. (3)

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

G. Yang, Y. G. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable modelocked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6(8), 582–585 (2009).
[Crossref]

Nanoscale (1)

S. Xu, F. Wang, C. Zhu, Y. Meng, Y. Liu, W. Liu, J. Tang, K. Liu, G. Hu, R. C. Howe, T. Hasan, R. Zhang, Y. Shi, and Y. Xu, “Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation,” Nanoscale 8(17), 9304–9309 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Status Solidi, B Basic Res. (2)

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, “Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite,” Phys. Status Solidi, B Basic Res. 245(10), 2319–2322 (2008).
[Crossref]

V. Scardaci, A. G. Rozhin, P. H. Tan, F. Wang, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotubes for ultrafast photonics,” Phys. Status Solidi, B Basic Res. 244(11), 4303–4307 (2007).
[Crossref]

Sci. Rep. (2)

D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R. C. T. Howe, Z. Ren, J. Bai, T. Hasan, and Z. Sun, “Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes,” Sci. Rep. 8(1), 2738 (2018).
[Crossref] [PubMed]

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range,” Sci. Rep. 7(1), 45109 (2017).
[Crossref] [PubMed]

Other (3)

http://www.fiberdesk.com/ .

G. P. Agrawal, “Applications of Nonlinear Fiber Optics,” Fourth ed., (Academic Press, Boston, 2007).

F. Wang, F. Torrisi, Z. Jiang, D. Popa, T. Hasan, Z. Sun, W. Cho, and A. C. Ferrari, “Graphene passively Qswitched two-micron fiber lasers,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, San Jose, California, 2012), P. JW2A.72.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic setup of the mode-locked fiber laser. LD: laser diode; WDM: wavelength division multiplexer; EDFA: erbium doped fiber amplifier; PM-TSF: polarization maintaining thulium-doped single-mode single clad fiber.
Fig. 2
Fig. 2 Tuning characteristics of our tunable filter. (a) The bandwidth is fixed at 4.46 nm, and the wavelength is adjusted from 1730 nm to 2030 nm. (b) The wavelength is fixed at 1960.4 nm, and the bandwidth is adjusted from 2.39 nm to 28.13 nm. Inset: the maximum filter’s bandwidth is 220 nm.
Fig. 3
Fig. 3 (a) Output pulse train (corresponding to a repetition rate of 14.83 MHz). (b) Radio frequency spectrum at the fundamental repetition rate (f0 = 14.83 MHz) with 1 kHz resolution bandwidth. Inset: broadband frequency spectrum (1 GHz span) with 100 kHz resolution bandwidth.
Fig. 4
Fig. 4 Wavelength tunability of the mode-locked fiber laser. (a) The narrowest spectral at each wavelength. The red line is the ASE sectrum of the thulium-doped fiber we used. (b) The widest spectral available at each wavelength. (c) The narrowest and widest spectral bandwidth at each wavelength. (d) The pump power and the average output power of the laser at different wavelengths.
Fig. 5
Fig. 5 Pulse duration tunability of the mode-locked fiber laser at 1901.8 nm. (a) Pulse duration can be adjusted from 0.91 ps to 6.43 ps. (b) FWHM bandwidth is tuned from minimum 0.64 nm to maximum 4.26 nm. (c) Output pulse duration as a function of spectral bandwidth.
Fig. 6
Fig. 6 (a) The evolution of the spectrum when the filter’s bandwidth is decreased. (b) Output spectrum bandwidth, pulse duration and average power as a function of the filter’s bandwidth.
Fig. 7
Fig. 7 Simulation results. (a) Spectra at different filter’s bandwidth. a: without filter; b: 35.2 nm filter; c: 20.5 nm; d: 8.0 nm; e: 4.1 nm; f: 2.9 nm. (b) The corresponding simulated autocorrelation traces.

Metrics