Abstract

A D-shape plastic optical fiber (D-POF) surface plasmon resonance (SPR) biosensor based on the graphene/Au film (G/Au) was proposed and experimentally demonstrated for detection of DNA hybridization process. To improve the detection performance of SPR sensors, the Physical Vapor Deposition (PVD) method was used to evaporate the Au film directly onto the graphene grown on copper foil, and the Au film acted as a role of traditional Polymethyl Methacrylate (PMMA). The process made graphene and Au film form seamless contact. Next, the G/Au was transferred onto the D-shape fiber together. We explored the G/Au SPR sensor by using the finite element method (FEM) and obtained the optimum materials thickness to form configuration. Compared to other plastic optical fiber experiments, the proposed sensor’s sensitivity was improved effectively and calculated as 1227 nm/RIU in a range of glucose solution. Meanwhile, our proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the resonance wavelength change. It also exhibits a satisfactory linear response (R2 = 0.996) to the target DNA liquids with respective concentrations of 0.1nM to1µM, which shows this method’s wide potential in medical diagnostics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light

Hong-Yu Lin, Woo-Hu Tsai, Yu-Chia Tsao, and Bor-Chiou Sheu
Appl. Opt. 46(5) 800-806 (2007)

Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors

Seung Ho Choi, Young L. Kim, and Kyung Min Byun
Opt. Express 19(2) 458-466 (2011)

Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber

Shaoqing Cao, Yu Shao, Ying Wang, Tiesheng Wu, Longfei Zhang, Yijian Huang, Feng Zhang, Changrui Liao, Jun He, and Yiping Wang
Opt. Express 26(4) 3988-3994 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
    [Crossref]
  2. M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
    [Crossref]
  3. A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
    [Crossref] [PubMed]
  4. J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
    [Crossref]
  5. Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
    [Crossref] [PubMed]
  6. B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
    [Crossref] [PubMed]
  7. Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
    [Crossref] [PubMed]
  8. R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
    [Crossref] [PubMed]
  9. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
    [Crossref]
  10. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [Crossref]
  11. S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
    [Crossref]
  12. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
    [Crossref]
  13. N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
    [Crossref]
  14. S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
    [Crossref]
  15. A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
    [Crossref]
  16. D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
    [Crossref] [PubMed]
  17. Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
    [Crossref] [PubMed]
  18. L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
    [Crossref] [PubMed]
  19. M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
    [Crossref] [PubMed]
  20. J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
    [Crossref] [PubMed]
  21. X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
    [Crossref] [PubMed]
  22. W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
    [Crossref] [PubMed]
  23. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  24. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
    [Crossref] [PubMed]
  25. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
    [Crossref]
  26. Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
    [Crossref] [PubMed]
  27. W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
    [Crossref]
  28. W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
    [Crossref]
  29. S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
    [Crossref]
  30. Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
    [Crossref] [PubMed]
  31. W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
    [Crossref]
  32. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  33. G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
    [Crossref] [PubMed]
  34. T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
    [Crossref] [PubMed]
  35. M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
    [Crossref]
  36. S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
    [Crossref]
  37. A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
    [Crossref] [PubMed]
  38. C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
    [Crossref]
  39. W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
    [Crossref]
  40. S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
    [Crossref] [PubMed]
  41. D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
    [Crossref] [PubMed]
  42. A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
    [Crossref]
  43. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [Crossref] [PubMed]

2018 (12)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

2017 (7)

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

2016 (4)

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

2015 (7)

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

2014 (4)

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

2013 (2)

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

2012 (3)

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

2011 (2)

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

2002 (1)

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Ahn, S. S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Albert, J.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Alberto, N.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Allil, R. C. S. B.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Arcas, A. D. S.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Arregui, F. J.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Asgari, A.

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Bahrami, M.

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Bai, C.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Bilro, L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Blair, D. A.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Booth, M. A.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Brynda, E.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Candiani, A.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Cao, E.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Cao, Y.

Cennamo, N.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Chen, C. S.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Chen, N.

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Chen, T. Y.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Childs, P.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Choi, D. S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Chuang, C. J.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Corradini, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Corres, J. M.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Costina, I.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Cucinotta, A.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

D’Agostino, G.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Del Villar, I.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

DeRosa, M. C.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Dutra, F. D. S.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Feng, D.

Feng, D. J.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Feng, X.

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Gahoi, A.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Gao, S. S.

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Gao, X.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Gao, X. G.

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Ghazinejad, M.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Ghrera, A. S.

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

Gowri, A.

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

Guan, B. O.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Guo, S. R.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Guo, T.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Homola, J.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Hossain, M. B.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Hsu, C. L.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Hu, W. H.

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Hua, H.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Huang, Y.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Huo, Y. Y.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Inum, R.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Jiang, S.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Jiang, S. Z.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Jiang, X.

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Kataria, S.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Kim, H.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Kim, Y. N.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Kitzmann, J.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Krajewska, A.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Kwak, Y. H.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Lan, G.

Lan, G. L.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Lee, Y. H.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lemme, M. C.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Li, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Li, C. H.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Li, D.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Li, H. S.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Li, L. J.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liang, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Lin, C. T.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lin, J.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Lin, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Ling, L.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Liu, A.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Liu, A. H.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, B.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Liu, M.

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Liu, S.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Liu, X.

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Liu, X. Y.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. J.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Loan, P. T.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lu, Z.

Lukosius, M.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Luo, S.

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Luo, S. Q.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Lupina, G.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Luxenhofer, O.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Malhotra, B. D.

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

Man, B.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Man, B. Y.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Marchelli, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Matias, I. R.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Mehr, W.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Mei, Y. H.

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Miao, X.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Nogueira, R.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Nong, J.

Nong, J. P.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Östling, M.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Ozkan, C. S.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Ozkan, M.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Pan, J.

Pan, X.

Pandey, M. K.

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

Pasternak, I.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Penchev, M.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Pesavento, M.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Pinto, J. L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Pissadakis, S.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Qiu, H. W.

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Ran, Y.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Rana, M. M.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Ren, J.

Ruhl, G.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Sai, V. V. R.

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

Sajal, V.

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

Selleri, S.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Seo, S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Shang, Z.

Sharma, N. K.

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

Shepherd, P.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Sheppard, A.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Shevchenko, Y.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Shi, Y.

Shukla, S.

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

Shushama, K. N.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Si, H.

Slavík, R.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Socorro, A. B.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Song, B.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Song, Y.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Sozzi, M.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Strupinski, W.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Sun, D.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Sun, M.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Sun, Z. C.

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Tahmasebpour, M.

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Tang, C.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Tang, L.

Travas-Sejdic, J.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Tse-Wei Wang, J.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Vaziri, S.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Veneziano, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Wang, C.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Wang, L.

Wang, M.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

Wang, N.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Wang, W.

Wang, X.

Wei, D.

Wei, K. H.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Wei, W.

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Wenger, C.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Werneck, M. M.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Wolff, A.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Wu, J.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Wu, M.

Wu, T. F.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Xie, X.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Xing, K.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Xiu, X.

Xiu, X. W.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Xu, J.

Xu, S.

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Xu, S. C.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Xu, Y.

Xu, Y. Y.

Yang, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Yang, J. W.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Yang, W.

Yang, W. S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Yengel, E.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Yi, J.

Yoon, D. H.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Yu, J.

Yue, W.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Yue, W. W.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Zeni, L.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Zhang, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Zhang, G.

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Zhang, G. W.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Zhang, H.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Zhang, W.

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Zhang, X.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Zhang, Y.

Zhang, Z.

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Zhao, X.

Zhong, C. Y.

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Zhu, A.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Zhu, B.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Zhu, Y.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Zoth, G.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

ACS Nano (1)

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Anal. Chem. (1)

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (8)

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

J. Nanosci. Nanotechnol. (1)

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Nanophotonics (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Nanoscale (1)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Opt. Express (8)

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Plasmonics (1)

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

RSC Advances (3)

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Sens. Actuators B Chem. (8)

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Sensors (Basel) (3)

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of graphene/Au film transfer.
Fig. 2
Fig. 2 Schematic diagram of a D-shaped fiber SPR sensor experimental setup.
Fig. 3
Fig. 3 (a) The schematic diagram of model. (b) Transmission spectra of optical fiber SPR sensors with and without single-layer graphene. (Inset) Mode profiles of the surface plasmon mode with single-layer graphene. (c) The relationship between the resonance wavelength and the refractive index corresponding to Au film thickness of 30-60nm. (d) The relationship between the resonance wavelength and the refractive index corresponding to different layers of graphene with 50nm Au.
Fig. 4
Fig. 4 (a) The Raman spectra of monolayer graphene grown on copper foil and graphene/Au film on fiber. (b) A SEM image of 50nm Au is evaporated onto the SiO2 substrate. Inset: the photo of graphene/Au film in the deionized water. (c) SEM image of bare D-POF. Inset: the surface morphology of the prepared D-shape fiber. (d) SEM image of graphene/Au film/D-POF. Inset: the surface morphology of fabricated SPR sensor. (e) AFM image of bare D-POF. (f) AFM image of Au/graphene/D-POF.
Fig. 5
Fig. 5 (a) The SPR spectrum of the G/Au SPR sensor with different concentrations of glucose solution. (b) The relationship between the resonance wavelength and the refractive index.
Fig. 6
Fig. 6 (a) Schematic of adding PBASE on graphene surface. (b) Schematic of adding probe DNA. (c) Schematic after adding complementary DNA onto fiber SPR sensor. (d) Schematic of adding mismatched DNA fiber onto fiber SPR sensor.
Fig. 7
Fig. 7 (a) SPR spectra of adding different substances onto graphene. (b) SPR spectra of the different complementary DNA. (c) The resonance wavelength shift as a function of the concentration of target DNA. (d) SPR spectra of before and after adding mis_DNA. (e) resonance wavelength as a function of adding PBASE, probe DNA, target DNA. (f) Wavelength shift as a function of the t_ DNA and mis_DNA.
Fig. 8
Fig. 8 (a) The transmission spectra for 1µM double stranded DNA hybridization process. (b) Real-time wavelength shift for mismatched DNA and complementary target DNA.

Tables (2)

Tables Icon

Table 1 Comparison of sensitivities between some plastic optical fiber sensors.

Tables Icon

Table 2 Comparison of DNA biosensor based on D-POF with other fiber-based structures.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α=2 k 0 Im{ n eff }
β=Re( n eff ) k 0
E( x,y,z,t )=E( x,y ) e j( ωtβz )

Metrics