Abstract

A metamaterial structure, which has positive and negative permeability over a wide microwave frequency band, has a proposed structure that can be employed as a superstrate for reducing the mutual coupling of a MIMO antenna system. This MIMO antenna system consists of two extremely close-spaced antenna elements. The proposed structure’s decoupling mechanism is verified by both the full-wave electromagnetic simulations and experiments, and the simulated and measured results agree very well with each other. The two-element MIMO antenna system, when loaded with the metamaterial-inspired superstrate, shows a high isolation (S21<-15 dB) within a broad matching band of 22.3% from 4.2 to 5.25 GHz covering the 5G frequency band of 4.8-5 GHz with an extremely close edge-to-edge space of just 1 mm (corresponding to 0.017λ at 4.9 GHz). The MIMO antenna system’s measured largest isolation with the metamaterial-inspired superstrate is 29 dB. This isolation is characterized by a maximum improvement of 23 dB, compared to the original case. Furthermore, after loading the superstrate, the measured gain is enhanced by more than 0.5 dB in the whole matching band as well, with a 3.2 dB maximum gain improvement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Planar metamaterial based on hybridization for directive emission

Abdelwaheb Ourir, Redha Abdeddaim, and Julien de Rosny
Opt. Express 20(16) 17545-17551 (2012)

Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array

He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Hui-Yong Zeng
Opt. Express 20(20) 21968-21976 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antenn. Propag. 52(11), 2810–2824 (2004).
    [Crossref]
  2. J. Kim, M. Sung, E. S. Kim, S. H. Cho, and J. H. Lee, “4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications,” Opt. Express 26(22), 28216–28227 (2018).
    [Crossref] [PubMed]
  3. S. Ghosh, T.-N. Tran, and T. Le-Ngoc, “Dual-Layer EBG-based miniaturized multi-element antenna for MIMO systems,” IEEE Trans. Antenn. Propag. 62(8), 3985–3997 (2014).
    [Crossref]
  4. S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antenn. Propag. 60(2), 456–463 (2012).
    [Crossref]
  5. Fan Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
    [Crossref]
  6. E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antenn. Propag. 56(6), 1648–1655 (2008).
    [Crossref]
  7. H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
    [Crossref]
  8. J. Y. Lee, S. H. Kim, and J. H. Jang, “Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures,” IEEE Trans. Antenn. Propag. 63(9), 4194–4198 (2015).
    [Crossref]
  9. M. A. Abdalla and A. A. Ibrahim, “Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications,” IEEE Antennas Wirel. Propag. Lett. 12, 1452–1455 (2013).
    [Crossref]
  10. H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
    [Crossref]
  11. D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-based design of planar compact MIMO monopoles,” IEEE Trans. Antenn. Propag. 61(5), 2758–2766 (2013).
    [Crossref]
  12. M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
    [Crossref]
  13. C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antenn. Propag. 59(10), 3936–3939 (2011).
    [Crossref]
  14. X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
    [Crossref]
  15. M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010).
    [Crossref]
  16. M. G. N. Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas WirelessPropag. Lett. 12, 15–18 (2013).
  17. Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
    [Crossref]
  18. P. K. Panda and D. Ghosh, “Isolation and gain enhancement of patch antennas using EMNZ superstrate,” AEU-Int. J. Electron. C, 86–170 (2018).
  19. M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
    [Crossref]
  20. B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
    [Crossref] [PubMed]
  21. Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
    [Crossref] [PubMed]
  22. D. K. Cheng, Field and wave electromagnetics (Addison-Wesley, 1989).
  23. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  24. D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
    [Crossref]

2018 (3)

P. K. Panda and D. Ghosh, “Isolation and gain enhancement of patch antennas using EMNZ superstrate,” AEU-Int. J. Electron. C, 86–170 (2018).

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

J. Kim, M. Sung, E. S. Kim, S. H. Cho, and J. H. Lee, “4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications,” Opt. Express 26(22), 28216–28227 (2018).
[Crossref] [PubMed]

2017 (2)

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

2016 (3)

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

2015 (1)

J. Y. Lee, S. H. Kim, and J. H. Jang, “Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures,” IEEE Trans. Antenn. Propag. 63(9), 4194–4198 (2015).
[Crossref]

2014 (1)

S. Ghosh, T.-N. Tran, and T. Le-Ngoc, “Dual-Layer EBG-based miniaturized multi-element antenna for MIMO systems,” IEEE Trans. Antenn. Propag. 62(8), 3985–3997 (2014).
[Crossref]

2013 (3)

M. A. Abdalla and A. A. Ibrahim, “Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications,” IEEE Antennas Wirel. Propag. Lett. 12, 1452–1455 (2013).
[Crossref]

D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-based design of planar compact MIMO monopoles,” IEEE Trans. Antenn. Propag. 61(5), 2758–2766 (2013).
[Crossref]

M. G. N. Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas WirelessPropag. Lett. 12, 15–18 (2013).

2012 (3)

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[Crossref]

S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antenn. Propag. 60(2), 456–463 (2012).
[Crossref]

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

2011 (1)

C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antenn. Propag. 59(10), 3936–3939 (2011).
[Crossref]

2010 (2)

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010).
[Crossref]

H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
[Crossref]

2008 (1)

E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antenn. Propag. 56(6), 1648–1655 (2008).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antenn. Propag. 52(11), 2810–2824 (2004).
[Crossref]

2003 (1)

Fan Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[Crossref]

Abdalla, M. A.

M. A. Abdalla and A. A. Ibrahim, “Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications,” IEEE Antennas Wirel. Propag. Lett. 12, 1452–1455 (2013).
[Crossref]

Abo Ghalyon, H.

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

Akbari, M.

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

Alsath, M. G. N.

M. G. N. Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas WirelessPropag. Lett. 12, 15–18 (2013).

Bait-Suwailam, M. M.

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010).
[Crossref]

Balasubramanian, B.

M. G. N. Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas WirelessPropag. Lett. 12, 15–18 (2013).

Cai, Y.

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

Chang, F. S.

S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antenn. Propag. 60(2), 456–463 (2012).
[Crossref]

Chen, Z. N.

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

Cho, S. H.

Chongcheawchamnan, M.

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

Cui, T. J.

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[Crossref]

Denidni, T. A.

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

Fan Yang,

Fan Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[Crossref]

Farahani, H. S.

H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
[Crossref]

Farahani, M.

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

Ghosh, D.

P. K. Panda and D. Ghosh, “Isolation and gain enhancement of patch antennas using EMNZ superstrate,” AEU-Int. J. Electron. C, 86–170 (2018).

Ghosh, S.

S. Ghosh, T.-N. Tran, and T. Le-Ngoc, “Dual-Layer EBG-based miniaturized multi-element antenna for MIMO systems,” IEEE Trans. Antenn. Propag. 62(8), 3985–3997 (2014).
[Crossref]

Hsu, C. C.

C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antenn. Propag. 59(10), 3936–3939 (2011).
[Crossref]

Ibrahim, A. A.

M. A. Abdalla and A. A. Ibrahim, “Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications,” IEEE Antennas Wirel. Propag. Lett. 12, 1452–1455 (2013).
[Crossref]

Inclan-Sanchez, L.

E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antenn. Propag. 56(6), 1648–1655 (2008).
[Crossref]

Jang, J. H.

J. Y. Lee, S. H. Kim, and J. H. Jang, “Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures,” IEEE Trans. Antenn. Propag. 63(9), 4194–4198 (2015).
[Crossref]

Jensen, M. A.

M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antenn. Propag. 52(11), 2810–2824 (2004).
[Crossref]

Kamyab, M.

H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
[Crossref]

Kanagasabai, M.

M. G. N. Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas WirelessPropag. Lett. 12, 15–18 (2013).

Ketzaki, D. A.

D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-based design of planar compact MIMO monopoles,” IEEE Trans. Antenn. Propag. 61(5), 2758–2766 (2013).
[Crossref]

Khan, S. A.

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

Kim, E. S.

Kim, J.

Kim, S. H.

J. Y. Lee, S. H. Kim, and J. H. Jang, “Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures,” IEEE Trans. Antenn. Propag. 63(9), 4194–4198 (2015).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Kulesza, W. J.

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

Lee, C. T.

S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antenn. Propag. 60(2), 456–463 (2012).
[Crossref]

Lee, J. H.

Lee, J. Y.

J. Y. Lee, S. H. Kim, and J. H. Jang, “Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures,” IEEE Trans. Antenn. Propag. 63(9), 4194–4198 (2015).
[Crossref]

Le-Ngoc, T.

S. Ghosh, T.-N. Tran, and T. Le-Ngoc, “Dual-Layer EBG-based miniaturized multi-element antenna for MIMO systems,” IEEE Trans. Antenn. Propag. 62(8), 3985–3997 (2014).
[Crossref]

Li, D.

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

Li, E.-P.

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

Lin, K. H.

C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antenn. Propag. 59(10), 3936–3939 (2011).
[Crossref]

Liu, L.

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

Liu, X. G.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[Crossref]

Ma, H. F.

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Naeem, U.

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

Nedil, M.

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

Pan, B. C.

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Panda, P. K.

P. K. Panda and D. Ghosh, “Isolation and gain enhancement of patch antennas using EMNZ superstrate,” AEU-Int. J. Electron. C, 86–170 (2018).

Pourahmadazar, J.

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

Qamar, Z.

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

Qi, H.

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

Qi, M. Q.

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Qing, X.

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

Quevedo-Teruel, Ó.

E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antenn. Propag. 56(6), 1648–1655 (2008).
[Crossref]

Rahmat-Samii, Y.

Fan Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[Crossref]

Rajo-Iglesias, E.

E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antenn. Propag. 56(6), 1648–1655 (2008).
[Crossref]

Ramahi, O. M.

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010).
[Crossref]

Sebak, A. R.

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

Sebak, A.-R.

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

Shafique, M. F.

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

Siddiqui, O. F.

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Su, H. L.

C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antenn. Propag. 59(10), 3936–3939 (2011).
[Crossref]

Su, S. W.

S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antenn. Propag. 60(2), 456–463 (2012).
[Crossref]

Sung, M.

Szabo, Z.

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

Tadjalli, A.

H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
[Crossref]

Tang, W. X.

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Tao, Z.

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Tran, T.-N.

S. Ghosh, T.-N. Tran, and T. Le-Ngoc, “Dual-Layer EBG-based miniaturized multi-element antenna for MIMO systems,” IEEE Trans. Antenn. Propag. 62(8), 3985–3997 (2014).
[Crossref]

Veysi, M.

H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Wallace, J. W.

M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antenn. Propag. 52(11), 2810–2824 (2004).
[Crossref]

Wang, Z.

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

Yang, X. M.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[Crossref]

Yin, X.

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

Yin, Y.

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

Yioultsis, T. V.

D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-based design of planar compact MIMO monopoles,” IEEE Trans. Antenn. Propag. 61(5), 2758–2766 (2013).
[Crossref]

Zhao, H.

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

Zhao, L.

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

Zheng, S.

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

Zhou, X. Y.

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[Crossref]

AEU-Int. J. Electron. (1)

P. K. Panda and D. Ghosh, “Isolation and gain enhancement of patch antennas using EMNZ superstrate,” AEU-Int. J. Electron. C, 86–170 (2018).

IEEE Access (1)

M. Akbari, H. Abo Ghalyon, M. Farahani, A.-R. Sebak, and T. A. Denidni, “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems,” IEEE Access 5, 6527–6537 (2017).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (6)

H. S. Farahani, M. Veysi, M. Kamyab, and A. Tadjalli, “Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate,” IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010).
[Crossref]

M. A. Abdalla and A. A. Ibrahim, “Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications,” IEEE Antennas Wirel. Propag. Lett. 12, 1452–1455 (2013).
[Crossref]

H. Qi, L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, “Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall,” IEEE Antennas Wirel. Propag. Lett. 15, 191–194 (2016).
[Crossref]

M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017).
[Crossref]

X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012).
[Crossref]

M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010).
[Crossref]

IEEE Antennas WirelessPropag. Lett. (1)

M. G. N. Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas WirelessPropag. Lett. 12, 15–18 (2013).

IEEE Trans. Antenn. Propag. (10)

Z. Qamar, U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafique, “Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate,” IEEE Trans. Antenn. Propag. 64(5), 1653–1660 (2016).
[Crossref]

C. C. Hsu, K. H. Lin, and H. L. Su, “Implementation of broadband isolator using metamaterial-inspired resonators and a T-Shaped branch for MIMO antennas,” IEEE Trans. Antenn. Propag. 59(10), 3936–3939 (2011).
[Crossref]

D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-based design of planar compact MIMO monopoles,” IEEE Trans. Antenn. Propag. 61(5), 2758–2766 (2013).
[Crossref]

J. Y. Lee, S. H. Kim, and J. H. Jang, “Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures,” IEEE Trans. Antenn. Propag. 63(9), 4194–4198 (2015).
[Crossref]

M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antenn. Propag. 52(11), 2810–2824 (2004).
[Crossref]

S. Ghosh, T.-N. Tran, and T. Le-Ngoc, “Dual-Layer EBG-based miniaturized multi-element antenna for MIMO systems,” IEEE Trans. Antenn. Propag. 62(8), 3985–3997 (2014).
[Crossref]

S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications,” IEEE Trans. Antenn. Propag. 60(2), 456–463 (2012).
[Crossref]

Fan Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag. 51(10), 2936–2946 (2003).
[Crossref]

E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antenn. Propag. 56(6), 1648–1655 (2008).
[Crossref]

D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag. 60(12), 6018–6023 (2012).
[Crossref]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

B. C. Pan, W. X. Tang, M. Q. Qi, H. F. Ma, Z. Tao, and T. J. Cui, “Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs,” Sci. Rep. 6(1), 30288 (2016).
[Crossref] [PubMed]

Z. Wang, L. Zhao, Y. Cai, S. Zheng, and Y. Yin, “A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system,” Sci. Rep. 8(1), 3152 (2018).
[Crossref] [PubMed]

Other (1)

D. K. Cheng, Field and wave electromagnetics (Addison-Wesley, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The (a) top view and (b) side view of a two-element MIMO antenna system. Radiated field distribution of the two-element MIMO antenna system excited at port 1 (c) original and (d) loaded with a superstrate (εx>0, μx<0).
Fig. 2
Fig. 2 (a) The structure of the unit cell; (b) the simulation model to retrieve design parameters. (c) Simulated magnitude of S-parameters of the metamaterial unit cell with respect to frequency. (d) Extracted effective relative permittivity and permeability. Parametric studying of (e) lb and (f) b.
Fig. 3
Fig. 3 (a) The side view of the proposed antenna. (b) The deployment of the superstrate.
Fig. 4
Fig. 4 (a) The simulated S11 and S21 for four cases. Simulated S11 and S21 for case 3 of different (b) h1 and (c) h2. (d) Simulated S11 and S21 for case 3 with different numbers of metamaterial units.
Fig. 5
Fig. 5 Simulated vector magnetic field distributions of (a) case 1 and (b) case 3 at xoz plane. Simulated Poynting vector distributions of (c) case 1 and (d) case 3 at xoz plane. Simulated electric field magnitude distributions of (e) case 1 and (f) case 3 at xoz plane.
Fig. 6
Fig. 6 (a) The fabricated original antenna. (b) The fabricated proposed antenna. (c) Radiation patterns and gain test environment. Simulated and measured (d) S11, (e) S21, and (f) gain for both case 1 and case 3.
Fig. 7
Fig. 7 Measured and simulated radiation patterns at 4.9 GHz in the (a) xoz and (b) yoz planes of case 1. Measured and simulated radiation patterns at 4.9 GHz in the (c) xoz and (d) yoz planes of case 3.

Tables (2)

Tables Icon

Table 1 Geometric parameters of the unit structure (unit: mm)

Tables Icon

Table 2 Comparison of different reported decoupling methods

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k=ω | μ x μ 0 || ε x ε 0 | =jω | μ x μ 0 || ε x ε 0 |=jk 0 | μ x || ε x |
E(x,t)= E 0 e jkx e jwt = E 0 e j(jω | μ x μ 0 || ε x ε 0 | )x e jwt = E 0 e k 0 | μ x || ε x | x e jwt

Metrics