Abstract

The multiple-quantum-well diode (MQW-diode) inherently exhibits simultaneous behavior because of the overlap between the emission spectra and spectral responsivity of the MQW-diode. This feature makes it feasible to form a full-duplex light communication system when two identical MQW-diodes separately function as a transmitter and a receiver at the same time. To verify spatial full-duplex light communication, we fabricated and characterized a monolithic multicomponent system by integrating two InGaN waveguide-based MQW-diodes into a single chip. A 5-μm-wide air gap between two MQW-diodes was manufactured for precise alignment, which could yield spatial light transmission and coupling. Spatial co-time co-frequency full-duplex (CCFD) light communication was experimentally demonstrated using the monolithic multicomponent system, a self-interference cancellation scheme was used to extract the superimposed signals, and a full-duplex audio transmission experiment was performed, opening a promising route toward parallel information processing via free space based on the simultaneous light-emitting and light-detecting phenomenon of the MQW-diode.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic III-nitride photonic integration toward multifunctional devices

Xumin Gao, Zheng Shi, Yan Jiang, Shuai Zhang, Chuan Qin, Jialei Yuan, Yuhuai Liu, Peter Grünberg, and Yongjin Wang
Opt. Lett. 42(23) 4853-4856 (2017)

Phosphor-free, white-light LED under alternating-current operation

Yu-Feng Yao, Hao-Tsung Chen, Chia-Ying Su, Chieh Hsieh, Chun-Han Lin, Yean-Woei Kiang, and C. C. Yang
Opt. Lett. 39(22) 6371-6374 (2014)

Optical learning neurochip with internal analog memory

Yoshikazu Nitta, Jun Ohta, Syuichi Tai, and Kazuo Kyuma
Appl. Opt. 32(8) 1264-1274 (1993)

References

  • View by:
  • |
  • |
  • |

  1. Z. Tong and M. Haenggi, “Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation,” IEEE Transactions on Commun. 63, 4490–4500 (2015).
    [Crossref]
  2. Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
    [Crossref]
  3. X. Y. Wu, Y. Shen, Y. X. Tang, and S. C. Xiao, “The power delay profile of the single antenna full-duplex self-interference channel in indoor environments at 2.4 ghz,” in Applied Mechanics and Materials, (Trans Tech Publ, 2015).
  4. E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, (IEEE, 2011), pp. 2002–2006.
    [Crossref]
  5. E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wirel. Commun. 13, 680–694 (2014).
    [Crossref]
  6. A. Goldsmith, Wireless Communications (Cambridge University, 2005).
    [Crossref]
  7. S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
    [Crossref]
  8. E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Transactions on Wirel. Commun. 14, 3519–3532 (2015).
    [Crossref]
  9. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Transactions on Signal Process. 59, 5983–5993 (2011).
    [Crossref]
  10. D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
    [Crossref]
  11. W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
    [Crossref] [PubMed]
  12. Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
    [Crossref]
  13. Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
    [Crossref] [PubMed]
  14. X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
    [Crossref]
  15. J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
    [Crossref]
  16. Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
    [Crossref]
  17. W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
    [Crossref]
  18. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
    [Crossref]
  19. X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).
  20. S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).
  21. D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
    [Crossref]
  22. S. Nakamura, “The roles of structural imperfections in InGaN-Based blue light-emitting diodes and laser diodes,” Science 281, 955–961 (1998).
    [Crossref] [PubMed]
  23. Y. Nanishi, “Nobel prize in physics: The birth of the blue led,” Nat. Photonics 8, 884–886 (2014).
    [Crossref]
  24. Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
    [Crossref]
  25. M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).
  26. M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).
  27. Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
    [Crossref]
  28. S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
    [Crossref]
  29. D. Bharadia, E. Mcmilin, and S. Katti, “Full duplex radios,” Acm Sigcomm Comput. Commun. Rev. 43, 375–386 (2013).
    [Crossref]

2018 (3)

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

2017 (3)

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

2016 (6)

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

2015 (4)

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Transactions on Wirel. Commun. 14, 3519–3532 (2015).
[Crossref]

Z. Tong and M. Haenggi, “Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation,” IEEE Transactions on Commun. 63, 4490–4500 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

2014 (6)

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wirel. Commun. 13, 680–694 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
[Crossref]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Y. Nanishi, “Nobel prize in physics: The birth of the blue led,” Nat. Photonics 8, 884–886 (2014).
[Crossref]

2013 (1)

D. Bharadia, E. Mcmilin, and S. Katti, “Full duplex radios,” Acm Sigcomm Comput. Commun. Rev. 43, 375–386 (2013).
[Crossref]

2011 (2)

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Transactions on Signal Process. 59, 5983–5993 (2011).
[Crossref]

1998 (1)

S. Nakamura, “The roles of structural imperfections in InGaN-Based blue light-emitting diodes and laser diodes,” Science 281, 955–961 (1998).
[Crossref] [PubMed]

Ahmed, E.

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Transactions on Wirel. Commun. 14, 3519–3532 (2015).
[Crossref]

Amano, H.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Anttila, L.

D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
[Crossref]

Bai, D.

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Bharadia, D.

D. Bharadia, E. Mcmilin, and S. Katti, “Full duplex radios,” Acm Sigcomm Comput. Commun. Rev. 43, 375–386 (2013).
[Crossref]

Bo, F.

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Brand, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Cai, W.

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

Chai, X.

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Choi, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Dick, C.

E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, (IEEE, 2011), pp. 2002–2006.
[Crossref]

Duarte, M.

E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, (IEEE, 2011), pp. 2002–2006.
[Crossref]

Eltawil, A. M.

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Transactions on Wirel. Commun. 14, 3519–3532 (2015).
[Crossref]

Everett, E.

E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wirel. Commun. 13, 680–694 (2014).
[Crossref]

E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, (IEEE, 2011), pp. 2002–2006.
[Crossref]

Feng, M.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Gao, H

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Gao, H.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Gao, X.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

Goldsmith, A.

A. Goldsmith, Wireless Communications (Cambridge University, 2005).
[Crossref]

Häberlen, M.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Haenggi, M.

Z. Tong and M. Haenggi, “Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation,” IEEE Transactions on Commun. 63, 4490–4500 (2015).
[Crossref]

Hong, S.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Hu, Z.

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

Huang, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Hui, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Ikeda, M.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Jain, M.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Jiang, Y.

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

Kane, M.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Kappers, M.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Katti, S.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

D. Bharadia, E. Mcmilin, and S. Katti, “Full duplex radios,” Acm Sigcomm Comput. Commun. Rev. 43, 375–386 (2013).
[Crossref]

Korpi, D.

D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
[Crossref]

Lane, P.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Levis, P.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Li, D.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Li, X.

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Li, Z.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Liu, J.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Liu, Y.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Long, K.

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Mcaleese, C.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Mcmilin, E.

D. Bharadia, E. Mcmilin, and S. Katti, “Full duplex radios,” Acm Sigcomm Comput. Commun. Rev. 43, 375–386 (2013).
[Crossref]

Mehlman, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Nakamura, S.

S. Nakamura, “The roles of structural imperfections in InGaN-Based blue light-emitting diodes and laser diodes,” Science 281, 955–961 (1998).
[Crossref] [PubMed]

Nanishi, Y.

Y. Nanishi, “Nobel prize in physics: The birth of the blue led,” Nat. Photonics 8, 884–886 (2014).
[Crossref]

Phillips, A.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Qian, S.

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Riihonen, T.

T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Transactions on Signal Process. 59, 5983–5993 (2011).
[Crossref]

Sabharwal, A.

E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wirel. Commun. 13, 680–694 (2014).
[Crossref]

E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, (IEEE, 2011), pp. 2002–2006.
[Crossref]

Sahai, A.

E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wirel. Commun. 13, 680–694 (2014).
[Crossref]

Salcianu, C.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Shen, X.

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

Shen, Y.

X. Y. Wu, Y. Shen, Y. X. Tang, and S. C. Xiao, “The power delay profile of the single antenna full-duplex self-interference channel in indoor environments at 2.4 ghz,” in Applied Mechanics and Materials, (Trans Tech Publ, 2015).

Shi, Z.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Sun, Q.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Sun, X.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Sun, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Syrjala, V.

D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
[Crossref]

Tang, Y. X.

X. Y. Wu, Y. Shen, Y. X. Tang, and S. C. Xiao, “The power delay profile of the single antenna full-duplex self-interference channel in indoor environments at 2.4 ghz,” in Applied Mechanics and Materials, (Trans Tech Publ, 2015).

Thrush, T.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Tong, Z.

Z. Tong and M. Haenggi, “Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation,” IEEE Transactions on Commun. 63, 4490–4500 (2015).
[Crossref]

Valkama, M.

D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
[Crossref]

Vasilakos, A. V.

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Wallis, D.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Wang, H.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Wang, J.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Wang, X.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Wei, Y.

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Werner, S.

T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Transactions on Signal Process. 59, 5983–5993 (2011).
[Crossref]

Wichman, R.

T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Transactions on Signal Process. 59, 5983–5993 (2011).
[Crossref]

Wu, X. Y.

X. Y. Wu, Y. Shen, Y. X. Tang, and S. C. Xiao, “The power delay profile of the single antenna full-duplex self-interference channel in indoor environments at 2.4 ghz,” in Applied Mechanics and Materials, (Trans Tech Publ, 2015).

Xiao, S. C.

X. Y. Wu, Y. Shen, Y. X. Tang, and S. C. Xiao, “The power delay profile of the single antenna full-duplex self-interference channel in indoor environments at 2.4 ghz,” in Applied Mechanics and Materials, (Trans Tech Publ, 2015).

Xu, Y.

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

Yang, H.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Yang, Y.

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

Yuan, J.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

Yuan, W.

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

Zhang, L.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Zhang, M.

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Zhang, R.

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

Zhang, S.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Zhang, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Zhang, Z.

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

Zhao, H.

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Zheng, X.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Zhou, K.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Zhou, R.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Zhou, Y.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Zhu, B.

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

Zhu, D.

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

Zhu, G.

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Zhu, H.

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

W. Cai, Y. Yang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, “On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities,” Opt. Express 24, 6004–6010 (2016).
[Crossref] [PubMed]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

Acm Sigcomm Comput. Commun. Rev. (1)

D. Bharadia, E. Mcmilin, and S. Katti, “Full duplex radios,” Acm Sigcomm Comput. Commun. Rev. 43, 375–386 (2013).
[Crossref]

ACS Photonics (1)

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si,” ACS Photonics 5, 699–704 (2018).

Appl. Phys. Express (2)

J. Yuan, W. Cai, X. Gao, G. Zhu, D. Bai, H. Zhu, and Y. Wang, “Monolithic integration of a suspended light-emitting diode with a y-branch structure,” Appl. Phys. Express 9, 032202 (2016).
[Crossref]

W. Cai, X. Gao, W. Yuan, Y. Yang, J. Yuan, H. Zhu, and Y. Wang, “Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities,” Appl. Phys. Express 9, 052204 (2016).
[Crossref]

Appl. Phys. Lett. (2)

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, “On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides,” Appl. Phys. Lett. 108, 966–968 (2016).
[Crossref]

X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, “High efficiency membrane light emitting diode fabricated by back wafer thinning technique,” Appl. Phys. Lett. 105, 2211–2213 (2014).

IEEE Commun. Mag. (4)

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

Z. Zhang, X. Chai, K. Long, and A. V. Vasilakos, “Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53, 128–137 (2015).
[Crossref]

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5g and beyond,” IEEE Commun. Mag. 52, 114–121 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

Y. Jiang, Z. Shi, S. Zhang, J. Yuan, Z. Hu, X. Shen, B. Zhu, and Y. Wang, “Simultaneous light-emitting light-detecting functionality of InGaN/GaN multiple quantum well diodes,” IEEE Electron Device Lett. 38, 1684–1687 (2017).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver,” IEEE J. Sel. Areas Commun. 32, 1674–1687 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and Y. Hui, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

IEEE Transactions on Commun. (1)

Z. Tong and M. Haenggi, “Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation,” IEEE Transactions on Commun. 63, 4490–4500 (2015).
[Crossref]

IEEE Transactions on Signal Process. (1)

T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Transactions on Signal Process. 59, 5983–5993 (2011).
[Crossref]

IEEE Transactions on Wirel. Commun. (2)

E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Transactions on Wirel. Commun. 14, 3519–3532 (2015).
[Crossref]

E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wirel. Commun. 13, 680–694 (2014).
[Crossref]

J. Appl. Phys. (1)

D. Zhu, C. Mcaleese, M. Häberlen, C. Salcianu, T. Thrush, M. Kappers, A. Phillips, P. Lane, M. Kane, and D. Wallis, “Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates,” J. Appl. Phys. 109, L492 (2011).
[Crossref]

J. Semicond. (1)

S. Qian, Y. Wei, M. Feng, Z. Li, F. Bo, H. Zhao, and Y. Hui, “GaN-on-Si blue/white leds: epitaxy, chip, and package,” J. Semicond. 37, 61–68 (2016).

Light. Sci. Appl. (1)

Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, and H. Amano, “Full-duplex light communication with a monolithic multicomponent system,” Light. Sci. Appl. 7, 83 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, and S. Zhang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10, 595 (2016).
[Crossref]

Y. Nanishi, “Nobel prize in physics: The birth of the blue led,” Nat. Photonics 8, 884–886 (2014).
[Crossref]

Opt. Commun. (1)

Y. Wang, Y. Xu, Y. Yang, X. Gao, B. Zhu, W. Cai, J. Yuan, R. Zhang, and H. Zhu, “Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication,” Opt. Commun. 387, 440–445 (2017).
[Crossref]

Opt. Express (1)

Science (1)

S. Nakamura, “The roles of structural imperfections in InGaN-Based blue light-emitting diodes and laser diodes,” Science 281, 955–961 (1998).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

X. Gao, J. Yuan, Y. Yang, S. Zhang, Z. Shi, X. Li, and Y. Wang, “InGaN directional coupler made with a one-step etching technique,” Semicond. Sci. Technol. 32, 065002 (2017).
[Crossref]

Other (3)

A. Goldsmith, Wireless Communications (Cambridge University, 2005).
[Crossref]

X. Y. Wu, Y. Shen, Y. X. Tang, and S. C. Xiao, “The power delay profile of the single antenna full-duplex self-interference channel in indoor environments at 2.4 ghz,” in Applied Mechanics and Materials, (Trans Tech Publ, 2015).

E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, (IEEE, 2011), pp. 2002–2006.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Cross-sectional high-angle annular dark-field (HAADF) scanning TEM image of an MQW-diode grown on Si. (b) Enlarged TEM image of the InGaN MQW active region marked by a blue rectangle in (a).
Fig. 2
Fig. 2 (a) Schematic fabrication process flow of the monolithic multicomponent system. (b) SEM image of the monolithic multicomponent system. (c) AFM image of the gap between two MQW-diodes.
Fig. 3
Fig. 3 I–V characteristics of the proposed MQW-diodes measured at room temperature: (a) MQW-diode A. (b) MQW-diode B. The two insets show measured EL spectra of MQW-diode A and MQW-diode B under different current injections.
Fig. 4
Fig. 4 (a) Log-scaled photocurrent plots for MQW-diode B with different MQW-diode A injection current levels. The insets show the light-emission images of the fabricated devices. (b) Induced photocurrent versus laser power. The inset shows the zoom-in figure of photocurrent measured when MQW-diode operating in detector mode.
Fig. 5
Fig. 5 The amplitude of the received signals versus the applied voltage of MQW-diode B: (a) 0 V; (b) 3 V; and (c) 4.5 V. (d) The amplitude of the received signals versus the different applied voltages of MQW-diode B from 0 V to 5.4 V.
Fig. 6
Fig. 6 (a) The transmitted signals from MQW-diode A. (b) The transmitted signals from MQW-diode B. (c) The superimposed signals from MQW-diode B.
Fig. 7
Fig. 7 The spatial full-duplex System using SICM.
Fig. 8
Fig. 8 (a) The transmitted signals from MQW-diode A. (b) The extracted signals from MQW-diode B using the SICM. (c) The extracted signals from MQW-diode B using the median filter.
Fig. 9
Fig. 9 (a) Schematic of spatial full-duplex audio transmission using visible light. (b) Audio signals of spatial full-duplex VLC system.

Metrics