Abstract

Continuous-wave, single-frequency, solid-state lasers with long-term frequency stability and low-intensity noise are an essential resource to generate squeezed and entangled states of light. In order to obtain the stable, nonclassical states of light, the frequency of the laser has to be stabilized with a stable reference. Due to the zero expansion property at a certain temperature, an ultra-low expansion (ULE) Fabry-Perot (F-P) cavity with a high finesse can be used as one of the best candidates of the frequency reference. We perform a detailed analysis of an extraordinarily high-frequency stability and ultra-low-intensity noise laser based on an improved cascade Pound-Drever-Hall frequency stabilization to a ULE F-P cavity. The frequency drift of the laser is suppressed to 7.72 MHz in 4 hours, and the noise level of the laser is simultaneously reduced to the quantum noise limit in the frequency below 300 kHz, which provides the possibility for the direct generation of a stable, high-level squeezed state in a lower-frequency region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stable CW laser based on low thermal expansion ceramic cavity with 4.9 mHz/s frequency drift

Isao Ito, Alissa Silva, Takuma Nakamura, and Yohei Kobayashi
Opt. Express 25(21) 26020-26028 (2017)

Laser frequency stabilization and control through offset sideband locking to optical cavities

J. I. Thorpe, K. Numata, and J. Livas
Opt. Express 16(20) 15980-15990 (2008)

Demonstration of a passive subpicostrain fiber strain sensor

Jong H. Chow, David E. McClelland, Malcolm B. Gray, and Ian C.M. Littler
Opt. Lett. 30(15) 1923-1925 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B. 55, 265–278 (1992).
    [Crossref]
  2. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
    [Crossref] [PubMed]
  3. L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
    [Crossref] [PubMed]
  4. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor lasers,” Phys. Rev. Lett. 58(10), 1000–1003 (1987).
    [Crossref] [PubMed]
  5. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
    [Crossref]
  6. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
    [Crossref] [PubMed]
  7. C. W. Chou, D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband, “Quantum coherence between two atoms beyond Q=1015,” Phys. Rev. Lett. 106(16), 160801 (2011).
    [Crossref] [PubMed]
  8. Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
    [Crossref] [PubMed]
  9. M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
    [Crossref] [PubMed]
  10. Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
    [Crossref] [PubMed]
  11. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
    [Crossref] [PubMed]
  12. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
    [Crossref] [PubMed]
  13. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
    [Crossref] [PubMed]
  14. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
    [Crossref]
  15. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
    [Crossref] [PubMed]
  16. Y. Y. Zhou, X. J. Jia, F. Li, C. D. Xie, and K. C. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
    [Crossref] [PubMed]
  17. X. Wen, Y. S. Han, J. Y. Liu, J. He, and J. M. Wang, “Polarization squeezing at the audio frequency band for the Rubidium D1 line,” Opt. Express 25(17), 20737–20748(2017).
    [Crossref] [PubMed]
  18. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
    [Crossref]
  19. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
    [Crossref] [PubMed]
  20. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
    [Crossref] [PubMed]
  21. The LIGO scientific collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
    [Crossref]
  22. The LIGO scientific collaboration and the virgo collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
    [Crossref] [PubMed]
  23. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
    [Crossref] [PubMed]
  24. N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical magnetometry with accessible in situ optical squeezing,” Opt. Lett. 39(22), 6533–6536 (2014).
    [Crossref] [PubMed]
  25. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
    [Crossref] [PubMed]
  26. H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
    [Crossref]
  27. W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262–24271 (2017).
    [Crossref] [PubMed]
  28. T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
    [Crossref]
  29. L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
    [Crossref]
  30. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
    [Crossref] [PubMed]
  31. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
    [Crossref]
  32. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  33. J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
    [Crossref]
  34. P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
    [Crossref]
  35. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
    [Crossref] [PubMed]
  36. I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
    [Crossref]
  37. Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero base line drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331–3334 (2016).
    [Crossref] [PubMed]
  38. D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband, and J. C. Bergquist, “Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments,” Opt. Express 19(4), 3471–3482 (2011).
    [Crossref] [PubMed]
  39. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [Crossref]
  40. C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B. 5(8), 1576–1587 (1988).
    [Crossref]
  41. P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
    [Crossref]
  42. N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry-Perot interferometers,” Opt. Lett. 18(12), 947–949 (1993).
    [Crossref] [PubMed]
  43. Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
    [Crossref] [PubMed]
  44. D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
    [Crossref]
  45. S. Taccheo, G. Sorbello, and P. Laporta, “Suppression of intensity noise in a diode-pumped Tm–Ho:YAG laser,” Opt. Lett. 25(22), 1642–1644 (2000).
    [Crossref]
  46. K. Audo and M. Alouini, “Intensity noise cancellation in solid-state laser at 1.5 μm using SHG depletion as a buffer reservoir,” Appl. Opt. 57(7), 1524–1529 (2018).
    [Crossref] [PubMed]
  47. P. X. Jin, H. D. Lu, J. Su, and K. C. Peng, “Scheme for improving laser stability via feedback control of intracavity nonlinear loss,” Appl. Opt. 55(13), 3478–3482 (2016).
    [Crossref] [PubMed]
  48. D. W. Allan, “Statistics of atomic frequency standards,” P. IEEE,  54(2), 221–230 (1966).
    [Crossref]

2018 (4)

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

K. Audo and M. Alouini, “Intensity noise cancellation in solid-state laser at 1.5 μm using SHG depletion as a buffer reservoir,” Appl. Opt. 57(7), 1524–1529 (2018).
[Crossref] [PubMed]

2017 (4)

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

X. Wen, Y. S. Han, J. Y. Liu, J. He, and J. M. Wang, “Polarization squeezing at the audio frequency band for the Rubidium D1 line,” Opt. Express 25(17), 20737–20748(2017).
[Crossref] [PubMed]

W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262–24271 (2017).
[Crossref] [PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

2016 (4)

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref] [PubMed]

The LIGO scientific collaboration and the virgo collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref] [PubMed]

P. X. Jin, H. D. Lu, J. Su, and K. C. Peng, “Scheme for improving laser stability via feedback control of intracavity nonlinear loss,” Appl. Opt. 55(13), 3478–3482 (2016).
[Crossref] [PubMed]

Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero base line drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331–3334 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (2)

The LIGO scientific collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

2012 (4)

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
[Crossref]

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

2011 (3)

2010 (5)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
[Crossref] [PubMed]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

2009 (1)

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

2008 (4)

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

2007 (1)

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

2006 (1)

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

2005 (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

2004 (1)

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

2000 (1)

1998 (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

1993 (1)

1992 (1)

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B. 55, 265–278 (1992).
[Crossref]

1988 (1)

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B. 5(8), 1576–1587 (1988).
[Crossref]

1987 (1)

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor lasers,” Phys. Rev. Lett. 58(10), 1000–1003 (1987).
[Crossref] [PubMed]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” P. IEEE,  54(2), 221–230 (1966).
[Crossref]

Adhikari, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Akamatsu, D.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Akiba, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” P. IEEE,  54(2), 221–230 (1966).
[Crossref]

Alouini, M.

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Arikawa, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Ast, S.

Audo, K.

Axner, O.

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
[Crossref]

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
[Crossref]

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Beduini, F. A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Bergquist, J. C.

Bize, S.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bowen, W. P.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Byer, R. L.

Cerè, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Chelkowski, S.

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Chen, L. S.

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Cheng, J. L.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Chou, C. W.

C. W. Chou, D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband, “Quantum coherence between two atoms beyond Q=1015,” Phys. Rev. Lett. 106(16), 160801 (2011).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Coq, Y. L.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Deng, R. J.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Dooley, K. L.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

Dowling, J. P.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Drullinger, R. E.

Eberle, T.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Ehlers, P.

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
[Crossref]

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
[Crossref]

English, E. M. L.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Furusawa, A.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Gray, M. B.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Grebing, C.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Grosse, N.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Grote, H.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

Gustafson, E. K.

Häfner, S.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Hall, J. L.

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B. 5(8), 1576–1587 (1988).
[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Han, Y. S.

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

He, J.

Hils, D.

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B. 5(8), 1576–1587 (1988).
[Crossref]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

Honda, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Horrom, T.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Hume, D. B.

C. W. Chou, D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband, “Quantum coherence between two atoms beyond Q=1015,” Phys. Rev. Lett. 106(16), 160801 (2011).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Huo, M. R.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Itaya, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor lasers,” Phys. Rev. Lett. 58(10), 1000–1003 (1987).
[Crossref] [PubMed]

Jia, X. J.

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Y. Y. Zhou, X. J. Jia, F. Li, C. D. Xie, and K. C. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Jin, P. X.

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

P. X. Jin, H. D. Lu, J. Su, and K. C. Peng, “Scheme for improving laser stability via feedback control of intracavity nonlinear loss,” Appl. Opt. 55(13), 3478–3482 (2016).
[Crossref] [PubMed]

Jin, X. L.

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Kimble, H. J.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B. 55, 265–278 (1992).
[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Koelemeij, J. C. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Koschorreck, M.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Kozuma, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Lam, P. K.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Laporta, P.

Lawrie, B. J.

Legero, T.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Leibrandt, D. R.

Lemonde, P.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Li, F.

Li, S. J.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Li, T. C.

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Li, Z. X.

Liu, J. Y.

Liu, Y. H.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Lodewyck, J.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Lu, H. D.

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

P. X. Jin, H. D. Lu, J. Su, and K. C. Peng, “Scheme for improving laser stability via feedback control of intracavity nonlinear loss,” Appl. Opt. 55(13), 3478–3482 (2016).
[Crossref] [PubMed]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Ma, W. G.

Machida, S.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor lasers,” Phys. Rev. Lett. 58(10), 1000–1003 (1987).
[Crossref] [PubMed]

Magalhães, D. V.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Mandache, C.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Matei, D. G.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Mavalvala, N.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
[Crossref] [PubMed]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

McClelland, D. E.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

McKenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

Mikhailov, E. E.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Millo, J.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Mitchell, M. W.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Miyakawa, O.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Müller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Nagatsuka, S.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Notcutt, M.

Otterstrom, N.

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B. 55, 265–278 (1992).
[Crossref]

Peng, K. C.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262–24271 (2017).
[Crossref] [PubMed]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

P. X. Jin, H. D. Lu, J. Su, and K. C. Peng, “Scheme for improving laser stability via feedback control of intracavity nonlinear loss,” Appl. Opt. 55(13), 3478–3482 (2016).
[Crossref] [PubMed]

Y. Y. Zhou, X. J. Jia, F. Li, C. D. Xie, and K. C. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B. 55, 265–278 (1992).
[Crossref]

Polzik, E. S.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Pooser, R. C.

Predojevic, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Qin, J. L.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Qin, Z. Z.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Riehle, F.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Robinson, J. M.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Rosenband, T.

C. W. Chou, D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband, “Quantum coherence between two atoms beyond Q=1015,” Phys. Rev. Lett. 106(16), 160801 (2011).
[Crossref] [PubMed]

D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband, and J. C. Bergquist, “Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments,” Opt. Express 19(4), 3471–3482 (2011).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Salomon, C.

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B. 5(8), 1576–1587 (1988).
[Crossref]

Sampas, N. M.

Santarelli, G.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Shang, Y. N.

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Shen, H.

Silander, I.

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
[Crossref]

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
[Crossref]

Singh, R.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

Slutsky, J.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

Sonderhouse, L.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Sorbello, G.

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Sterr, U.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Su, J.

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

P. X. Jin, H. D. Lu, J. Su, and K. C. Peng, “Scheme for improving laser stability via feedback control of intracavity nonlinear loss,” Appl. Opt. 55(13), 3478–3482 (2016).
[Crossref] [PubMed]

Su, X. L.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

Taccheo, S.

Tanimura, T.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Thorpe, M. J.

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Wang, D.

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Wang, H.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Wang, J. M.

Wang, J. Y.

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
[Crossref]

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
[Crossref]

Wang, W. Z.

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Wang, Y.

Wang, Y. J.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Wen, X.

Westergaard, P. G.

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Weyrich, R.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Whitcomb, S. E.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

Wineland, D. J.

C. W. Chou, D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband, “Quantum coherence between two atoms beyond Q=1015,” Phys. Rev. Lett. 106(16), 160801 (2011).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Wolfgramm, F.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Wu, H. F.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Wu, L.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Xie, C. D.

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Y. Y. Zhou, X. J. Jia, F. Li, C. D. Xie, and K. C. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier,” Opt. Express 18(6), 6149–6155 (2010).
[Crossref] [PubMed]

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Yamamoto, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor lasers,” Phys. Rev. Lett. 58(10), 1000–1003 (1987).
[Crossref] [PubMed]

Yan, Z. H.

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

Yang, T.

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Yang, W. H.

Ye, J.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Yin, Q. W.

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

Yokoi, Y.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Yu, J.

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

Yu, X. D.

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

Zang, E. J.

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Zhang, J.

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

Zhang, W.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Zheng, Y. H.

Zhou, Y. Y.

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

Y. Y. Zhou, X. J. Jia, F. Li, C. D. Xie, and K. C. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref] [PubMed]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B. (2)

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B. 55, 265–278 (1992).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[Crossref]

Europhys Lett. (1)

D. Wang, Y. N. Shang, Z. H. Yan, W. Z. Wang, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator,” Europhys Lett. 82, 24003 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, and K. C. Peng, “Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600505 (2018).
[Crossref]

J. Opt. Soc. Am. B. (3)

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B. 5(8), 1576–1587 (1988).
[Crossref]

P. Ehlers, I. Silander, J. Y. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12 cm−1 Hz −1/2 region,” J. Opt. Soc. Am. B. 29(6), 1305–1315 (2012).
[Crossref]

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B. 29(5), 916–923 (2012).
[Crossref]

Nat. Commun. (2)

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010).
[Crossref] [PubMed]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8, 718 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

The LIGO scientific collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Nat. Phys. (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

New J. Phys. (1)

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

P. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” P. IEEE,  54(2), 221–230 (1966).
[Crossref]

Phys. Rev. A (2)

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

L. S. Chen, J. L. Hall, J. Ye, T. Yang, E. J. Zang, and T. C. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Phys. Rev. A. (1)

J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Ültrastable lasers based on vibration insensitive cavities", Phys. Rev. A. 79(5), 053829 (2009).
[Crossref]

Phys. Rev. Lett. (15)

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband, “Quantum coherence between two atoms beyond Q=1015,” Phys. Rev. Lett. 106(16), 160801 (2011).
[Crossref] [PubMed]

Y. Y. Zhou, J. Yu, Z. H. Yan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum secret sharing among four players using multipartite bound entanglement of an optical field,” Phys. Rev. Lett. 121(15), 150502 (2018).
[Crossref] [PubMed]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110(18), 181101 (2013).
[Crossref] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor lasers,” Phys. Rev. Lett. 58(10), 1000–1003 (1987).
[Crossref] [PubMed]

The LIGO scientific collaboration and the virgo collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref] [PubMed]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93(16), 161105 (2004).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al + optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Sci. Adv. (1)

M. R. Huo, J. L. Qin, J. L. Cheng, Z. H. Yan, Z. Z. Qin, X. L. Su, X. J. Jia, C. D. Xie, and K. C. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref] [PubMed]

Science (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Ünconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the experimental setup. Dotted curves and solid curves represent the circuitry part and the light path, respectively. Nd:YAP Laser: Intra-cavity frequency-doubled tunable single-frequency laser. DBS: Dichroic beam spliter. λ / 2: Half-wave plate. λ / 4: Quarter-wave plate. PBS1-3: Polarization beam splitter. EOM: Electro-optic modulator. ISO: Isolator. PZT: Piezo-electric transducer. PD1-3: Power detector. PM: Power meter. AOM: Acousto-optic modulator. PID1-2: Proportional-integral-differential controller. LPF: Low-pass filter. AF: Attenuation filter. VCO: Voltage controlled oscillator. SG: Signal generator. Δ ϕ: Phase shift. ULE cavity: Ultralow expansion cavity.
Fig. 2
Fig. 2 The measured FSR of the ULE cavity and the linewidth of the laser .
Fig. 3
Fig. 3 Schematic of the partial servo controller. PID1-2: Proportional-integral-differential controller. AOM: Acousto-optic modulator. AF: Homemade attenuation filter. VCO: Voltage controlled oscillator. PZT: Piezo-electric transducer.
Fig. 4
Fig. 4 Schematic of the intensity noise power spectra detection system. 50/50 BS: 50/50 beam splitter. D1-2: Homemade high signal-to-noise ratio detector. +/-: Positive or negative power combiner. SA: Spectrum analyzer.
Fig. 5
Fig. 5 The intensity noise power spectras of the laser state.
Fig. 6
Fig. 6 Frequency drift of the 1080 nm laser in 4 hours.
Fig. 7
Fig. 7 Power stability of the laser in 4 hours.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f f = Δ L L ,

Metrics