Abstract

X-ray computed tomography (XCT) is a well-established method for measuring and inspecting an object’s internal structure in a non-destructive manner. Ring artefacts are unwanted high- or low-intensity rings that appear in CT images that influence CT-based measurements. The cause of the subtle ring artefacts found in high-resolution XCT data is found to be due to inadequate flat field detector correction. Therefore, in this work, the usual two-point flat field correction is replaced by a multi-point, piecewise linear flat field correction. The proposed method is shown to increase the signal-to-noise ratio of exemplary CT data by up to 12.1%. Based on the results presented, it is recommended that a minimum of seven open field images should be used for flat field correction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray cone-beam computed tomography geometric artefact reduction based on a data-driven strategy

Kai Xiao, Yu Han, Yifu Xu, Lei Li, Xiaoqi Xi, Haibing Bu, and Bin Yan
Appl. Opt. 58(17) 4771-4780 (2019)

Ring artifact suppression in X-ray computed tomography using a simple, pixel-wise response correction

Linda C. P. Croton, Gary Ruben, Kaye S. Morgan, David M. Paganin, and Marcus J. Kitchen
Opt. Express 27(10) 14231-14245 (2019)

Ring artifact correction using detector line-ratios in computed tomography

Younguk Kim, Jongduk Baek, and Dosik Hwang
Opt. Express 22(11) 13380-13392 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity measurements and analysis for metal additive manufacturing process control,” J. Res. Natl. Inst. Stand. Technol. 119, 494–528 (2014).
    [Crossref] [PubMed]
  2. P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
    [Crossref] [PubMed]
  3. F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
    [Crossref] [PubMed]
  4. W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
    [Crossref]
  5. N. Flay, W. Sun, S. Brown, R. Leach, and T. Blumensath, “Investigation of the focal spot drift in industrial cone-beam x-ray computed tomography,” Digital Industrial Radiology and Computed Tomography, Belgium, (2015).
  6. J. J. Lifton, A. A. Malcolm, and J. W. McBride, “An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology,” Meas. Sci. Technol. 27(1), 15007 (2016).
    [Crossref]
  7. J. J. Lifton and S. Carmignato, “Simulating the influence of scatter and beam hardening in dimensional computed tomography,” Meas. Sci. Technol. 28(10), 104001 (2017).
    [Crossref]
  8. J. J. Lifton, A. A. Malcolm, and J. W. McBride, “A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology,” J. XRay Sci. Technol. 23(1), 65–82 (2015).
    [PubMed]
  9. E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
    [Crossref] [PubMed]
  10. M. Rivers, “Tutorial introduction to x-ray computed microtomography data processing,” University of Chicago, (1998).
  11. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express 17(10), 8567–8591 (2009).
    [Crossref] [PubMed]
  12. J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
    [PubMed]
  13. G. R. Davis and J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instr. and Meth. in Phys. Res. A,  394(1–2), 157–162 (1997).
  14. W. Vågberg, J. C. Larsson, and H. M. Hertz, “Removal of ring artifacts in microtomography by characterization of scintillator variations,” Opt. Express 25(19), 23191–23198 (2017).
    [Crossref] [PubMed]
  15. J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” SPIE Conference on Physics of Medical Imaging, San Diego, California, (1998).
  16. A. L. C. Kwan, J. A. Seibert, and J. M. Boone, “An improved method for flat-field correction of flat panel x-ray detector,” Med. Phys. 33(2), 391–393 (2006).
    [Crossref] [PubMed]
  17. T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).
  18. D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

2018 (1)

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

2017 (2)

J. J. Lifton and S. Carmignato, “Simulating the influence of scatter and beam hardening in dimensional computed tomography,” Meas. Sci. Technol. 28(10), 104001 (2017).
[Crossref]

W. Vågberg, J. C. Larsson, and H. M. Hertz, “Removal of ring artifacts in microtomography by characterization of scintillator variations,” Opt. Express 25(19), 23191–23198 (2017).
[Crossref] [PubMed]

2016 (2)

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology,” Meas. Sci. Technol. 27(1), 15007 (2016).
[Crossref]

2015 (1)

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology,” J. XRay Sci. Technol. 23(1), 65–82 (2015).
[PubMed]

2014 (1)

J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity measurements and analysis for metal additive manufacturing process control,” J. Res. Natl. Inst. Stand. Technol. 119, 494–528 (2014).
[Crossref] [PubMed]

2011 (1)

E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
[Crossref] [PubMed]

2009 (1)

2006 (1)

A. L. C. Kwan, J. A. Seibert, and J. M. Boone, “An improved method for flat-field correction of flat panel x-ray detector,” Med. Phys. 33(2), 391–393 (2006).
[Crossref] [PubMed]

2004 (1)

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[PubMed]

2003 (1)

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

2000 (1)

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

1997 (1)

G. R. Davis and J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instr. and Meth. in Phys. Res. A,  394(1–2), 157–162 (1997).

Anas, E. M.

E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
[Crossref] [PubMed]

Bauscher, I.

T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).

Boone, J. M.

A. L. C. Kwan, J. A. Seibert, and J. M. Boone, “An improved method for flat-field correction of flat panel x-ray detector,” Med. Phys. 33(2), 391–393 (2006).
[Crossref] [PubMed]

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” SPIE Conference on Physics of Medical Imaging, San Diego, California, (1998).

Brown, S.

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

Carmignato, S.

J. J. Lifton and S. Carmignato, “Simulating the influence of scatter and beam hardening in dimensional computed tomography,” Meas. Sci. Technol. 28(10), 104001 (2017).
[Crossref]

Clackdoyle, R.

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

Claussen, J.

T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).

Davidson, D. W.

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

Davis, G. R.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

G. R. Davis and J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instr. and Meth. in Phys. Res. A,  394(1–2), 157–162 (1997).

Elliott, J. C.

G. R. Davis and J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instr. and Meth. in Phys. Res. A,  394(1–2), 157–162 (1997).

Flay, N.

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

Fröjdh, C.

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

Garboczi, E. J.

J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity measurements and analysis for metal additive manufacturing process control,” J. Res. Natl. Inst. Stand. Technol. 119, 494–528 (2014).
[Crossref] [PubMed]

Hasan, K.

E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
[Crossref] [PubMed]

Hebenstreit, K. M.

J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity measurements and analysis for metal additive manufacturing process control,” J. Res. Natl. Inst. Stand. Technol. 119, 494–528 (2014).
[Crossref] [PubMed]

Hertz, H. M.

Hofmann, T.

T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).

Kim, J. G.

E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
[Crossref] [PubMed]

Kwan, A. L. C.

A. L. C. Kwan, J. A. Seibert, and J. M. Boone, “An improved method for flat-field correction of flat panel x-ray detector,” Med. Phys. 33(2), 391–393 (2006).
[Crossref] [PubMed]

Lai, Y.-K.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Larsson, J. C.

Lee, S. Y.

E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
[Crossref] [PubMed]

Lifton, J. J.

J. J. Lifton and S. Carmignato, “Simulating the influence of scatter and beam hardening in dimensional computed tomography,” Meas. Sci. Technol. 28(10), 104001 (2017).
[Crossref]

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology,” Meas. Sci. Technol. 27(1), 15007 (2016).
[Crossref]

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology,” J. XRay Sci. Technol. 23(1), 65–82 (2015).
[PubMed]

Lindfors, K. K.

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” SPIE Conference on Physics of Medical Imaging, San Diego, California, (1998).

Liu, C.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Malcolm, A. A.

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology,” Meas. Sci. Technol. 27(1), 15007 (2016).
[Crossref]

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology,” J. XRay Sci. Technol. 23(1), 65–82 (2015).
[PubMed]

Marone, F.

McBride, J.

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

McBride, J. W.

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology,” Meas. Sci. Technol. 27(1), 15007 (2016).
[Crossref]

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology,” J. XRay Sci. Technol. 23(1), 65–82 (2015).
[PubMed]

McCarthy, M.

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

Mennessier, C.

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

Mills, D.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Münch, B.

Nachtrab, F.

T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).

Nilsson, H.-E.

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

Noo, F.

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

O’Shea, V.

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

Postnov, A.

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[PubMed]

Rahman, M.

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

Roney, T. J.

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

Rosin, P. L.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Russell, Y.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Seibert, J. A.

A. L. C. Kwan, J. A. Seibert, and J. M. Boone, “An improved method for flat-field correction of flat panel x-ray detector,” Med. Phys. 33(2), 391–393 (2006).
[Crossref] [PubMed]

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” SPIE Conference on Physics of Medical Imaging, San Diego, California, (1998).

Sijbers, J.

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[PubMed]

Slotwinski, J. A.

J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity measurements and analysis for metal additive manufacturing process control,” J. Res. Natl. Inst. Stand. Technol. 119, 494–528 (2014).
[Crossref] [PubMed]

Stampanoni, M.

Sun, W.

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

Trtik, P.

Tuson, G.

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Uhlmann, N.

T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).

Vågberg, W.

White, T. A.

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

E. M. Anas, J. G. Kim, S. Y. Lee, and K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(72), 72 (2011).
[Crossref] [PubMed]

J. Res. Natl. Inst. Stand. Technol. (1)

J. A. Slotwinski, E. J. Garboczi, and K. M. Hebenstreit, “Porosity measurements and analysis for metal additive manufacturing process control,” J. Res. Natl. Inst. Stand. Technol. 119, 494–528 (2014).
[Crossref] [PubMed]

J. XRay Sci. Technol. (1)

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology,” J. XRay Sci. Technol. 23(1), 65–82 (2015).
[PubMed]

Meas. Sci. Technol. (3)

J. J. Lifton, A. A. Malcolm, and J. W. McBride, “An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology,” Meas. Sci. Technol. 27(1), 15007 (2016).
[Crossref]

J. J. Lifton and S. Carmignato, “Simulating the influence of scatter and beam hardening in dimensional computed tomography,” Meas. Sci. Technol. 28(10), 104001 (2017).
[Crossref]

W. Sun, S. Brown, N. Flay, M. McCarthy, and J. McBride, “A reference sample for investigating the stability of the imaging system of x-ray computed tomography,” Meas. Sci. Technol. 27(8), 085004 (2016).
[Crossref]

Med. Phys. (1)

A. L. C. Kwan, J. A. Seibert, and J. M. Boone, “An improved method for flat-field correction of flat panel x-ray detector,” Med. Phys. 33(2), 391–393 (2006).
[Crossref] [PubMed]

Nucl. Instr. and Meth. in Phys. Res. A (2)

G. R. Davis and J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instr. and Meth. in Phys. Res. A,  394(1–2), 157–162 (1997).

D. W. Davidson, C. Fröjdh, V. O’Shea, H.-E. Nilsson, and M. Rahman, “Limitations to flat-field correction methods when using an X-ray spectrum,” Nucl. Instr. and Meth. in Phys. Res. A,  509(1 – 3), 146–150 (2003).

Opt. Express (2)

Phys. Med. Biol. (2)

J. Sijbers and A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[PubMed]

F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Phys. Med. Biol. 45(11), 3489–3508 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

P. L. Rosin, Y.-K. Lai, C. Liu, G. R. Davis, D. Mills, G. Tuson, and Y. Russell, “Virtual recovery of content from x-ray micro-tomography scans of damaged historic scrolls,” Sci. Rep. 8(1), 11901 (2018).
[Crossref] [PubMed]

Other (4)

N. Flay, W. Sun, S. Brown, R. Leach, and T. Blumensath, “Investigation of the focal spot drift in industrial cone-beam x-ray computed tomography,” Digital Industrial Radiology and Computed Tomography, Belgium, (2015).

M. Rivers, “Tutorial introduction to x-ray computed microtomography data processing,” University of Chicago, (1998).

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” SPIE Conference on Physics of Medical Imaging, San Diego, California, (1998).

T. Hofmann, J. Claussen, F. Nachtrab, I. Bauscher, and N. Uhlmann, “Linearity of flat panel x-ray detectors and comparison of non-linear correction algorithms,” International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A CT image displaying severe ring artefacts, the CT image is of a uniform polymer rod.
Fig. 2
Fig. 2 (a) Image of pixel-wise gain calculated using a bright field and dark field image. (b) Image of pixel-wise offset calculated using a bright field and dark field image.
Fig. 3
Fig. 3 (a) Illustration of the conventional flat field correction with a single gain and offset derived from a line calculated between two or more open field intensity measurements. (b) Illustration of the proposed multi-point piecewise linear flat field correction: a line is calculated between two consecutive open field intensity measurements to give the gain and offset for this range of intensity values.
Fig. 4
Fig. 4 Photograph of the stepwedges used to assess the influence of number of open field images used for the flat field correction.
Fig. 5
Fig. 5 Influence of the number of open field images used for the multi-point piecewise linear flat field correction on the standard deviation of the material grey values in reconstructed CT data, (a) for the aluminium stepwedge, (b) for the nylon stepwedge.
Fig. 6
Fig. 6 Pixel-wise linearity of the considered X-ray detector. The linearity is evaluated by plotting the single pixel intensity against the mean detector intensity for 9 different intensities and then evaluating the R2 of the least squares line fitted to this trend. (a) Two-point flat field correction, standard deviation of 4.25e-4. (b) Multi-point piecewise linear flat field correction, standard deviation of 3.29e-4. Reduction in standard deviation of linearity maps by 22.5%.
Fig. 7
Fig. 7 Three example workpieces (a) porous ceramic filter 1 × 0.5 × 0.3 cm (width × depth × height), (b) ceramic additively manufactured cube with a repeating internal cellular structure 1.2 × 1.2 × 1.2 cm, and (c) polymer cube with various diameter holes drilled into its faces 4 × 4 × 4 cm.
Fig. 8
Fig. 8 Central CT images of the porous ceramic filter workpiece reconstructed using a 2-point flat field correction (a) and with a 13 point piecewise linear flat field correction (b). SNR increase of 4.8%, ROI indicated in (a). (c) Plot of line profiles with and without multi-point piecewise flat field correction, line profile position indicated by dashed line in (a). (d) Difference between (a) and (b).
Fig. 9
Fig. 9 Central CT images of the AM ceramic cube workpiece reconstructed using a 2-point flat field correction (a) and with a 12 point piecewise linear flat field correction (b). SNR increase of 12.1%, ROI indicated in (a). (c) Plot of line profiles with and without multi-point piecewise flat field correction, line profile position indicated by dashed line in (a). (d) Difference between (a) and (b).
Fig. 10
Fig. 10 Central CT images of the polymer cube workpiece reconstructed using a 2-point flat field correction (a) and with a 13 point piecewise linear flat field correction (b). SNR increase of 1.5%, ROI indicated in (a). (c) Plot of line profiles with and without multi-point piecewise flat field correction, line profile position indicated by dashed line in (a). (d) Difference between (a) and (b).

Tables (2)

Tables Icon

Table 1 X-ray CT scan settings for each workpiece.

Tables Icon

Table 2 Summary SNR values for the different workpieces.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G(x,y)= μ B μ D I B (x,y) I D (x,y)
O(x,y)= μ B G(x,y) I B (x,y)
I C (x,y)= I R (x,y)G(x,y)+O(x,y)

Metrics