Abstract

We study the potentialities of a two-color Surface Plasmon Resonance (SPR) spectroscopy nanosizer by monitoring the assembling of a colloidal dispersion of citrate stabilized gold nanoparticles (AuNPs) on SiO2 surface. When the AuNPs/water composite’s optical density layer is negligible and the electron mean-free path limitation is taken into account in the AuNPs’ dielectric constant;s formulation, the surface density σ of the nanoparticle array and the statistical mean size <r> of the nanoparticles can be straightly determined by using two-color SPR spectroscopy in the context of Maxwell’s Garnett theory. The optical method, demonstrated experimentally for AuNPs with a nominal mean diameter of 15 nm, can, theoretically, be extended to bigger nanoparticles, based on a simple scaling relation between the extinction cross section of the single nanoparticle σext and the surface density σ. The experimental results, comparable to those obtained by AFM, transmission electron microscopy and dynamic light scattering technique, establish a novel insight on the SPR spectroscopy’s potential to accurately characterize nanomaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

Rakesh Singh Moirangthem, Yia-Chung Chang, and Pei-Kuen Wei
Biomed. Opt. Express 2(9) 2569-2576 (2011)

Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements

Rakesh Singh Moirangthem, Mohammad Tariq Yaseen, Pei-Kuen Wei, Ji-Yen Cheng, and Yia-Chung Chang
Biomed. Opt. Express 3(5) 899-910 (2012)

Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films

Virendra N. Rai, Arvind K. Srivastava, Chandrachud Mukherjee, and Sudip K. Deb
Appl. Opt. 51(14) 2606-2615 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [PubMed]
  2. P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
    [PubMed]
  3. T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
    [PubMed]
  4. Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).
  5. A. Shiohara, Y. Wang, and L. M. Liz-Marzan, “Recent Approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
  6. M. S. Golden, A. C. Bjonnes, and R. M. Georgiadis, “Distance and wavelength dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging,” J. Phys. Chem. C 114(19), 8837–8843 (2010).
  7. N. Souza, J. Costa, R. Santos, A. Cruz, T. Del Rosso, and K. Costa, “Modal analysis of surface plasmon resonance sensor coupled to periodic array of core-shell metallic nanoparticles,” Resonance (InTech, 2017).
  8. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” J. Discuss. Faraday Soc. 11, 55–75 (1951).
  9. T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).
  10. I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).
  11. T. Del Rosso, W. Margulis, G. Fontana, and I. C. S. Carvalho, Metal Nanostructures for Photonics, (Elsevier, 2018), Chap.10, pp. 223–259.
  12. L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).
  13. P. B. Johnson and R. W. Christy, ““Optical constants of the noble metals,” Phys. Rev. B Condens,” Matter Mater. 6(12), 4370–4379 (1972).
  14. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).
  15. M. A. García, J. Llopis, and S. E. Paje, “A simple model to evaluate the optical absorption spectrum for small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5), 313–320 (1999).
  16. T. Del Rosso, J. E. Sánchez, R. S. Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,” Opt. Express 22(16), 18914–18923 (2014).
    [PubMed]
  17. H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).
  18. K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130(4–6), 260–266 (1996).
  19. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley, 2011).
  20. M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info .
  21. L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix,” J. Opt. Soc. Am. A 2(4), 595–602 (1985).
  22. I. Capek, Noble Metal Nanoparticles: Preparation, Composite Nanostructures, Biodecoration and Collective Properties (Springer, 2017).
  23. V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
    [PubMed]
  24. Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).
  25. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182(4–6), 273–279 (2000).
  26. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
    [PubMed]
  27. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).
  28. M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
    [PubMed]
  29. J. Souza, Q. Zaman, K.Q. Costa, V. Dmitriev, O. Pandoli, G. Fontes, and T. Del Rosso, “Limits of the Effective Medium Theory in Particle Amplified Surface Plasmon Resonance Spectroscopy Biosensors,” to appear in Sensors (2019).
  30. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuat. B. 54(1-2), 16–24 (1999).
  31. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).
  32. L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modifiothered Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
  33. G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
    [Crossref]

2018 (1)

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

2017 (1)

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

2014 (4)

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

A. Shiohara, Y. Wang, and L. M. Liz-Marzan, “Recent Approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).

T. Del Rosso, J. E. Sánchez, R. S. Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,” Opt. Express 22(16), 18914–18923 (2014).
[PubMed]

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

2011 (1)

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

2010 (2)

M. S. Golden, A. C. Bjonnes, and R. M. Georgiadis, “Distance and wavelength dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging,” J. Phys. Chem. C 114(19), 8837–8843 (2010).

Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).

2009 (1)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[PubMed]

2005 (2)

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).

2004 (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[PubMed]

2002 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).

2000 (1)

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182(4–6), 273–279 (2000).

1999 (4)

M. A. García, J. Llopis, and S. E. Paje, “A simple model to evaluate the optical absorption spectrum for small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5), 313–320 (1999).

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuat. B. 54(1-2), 16–24 (1999).

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modifiothered Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).

1996 (1)

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130(4–6), 260–266 (1996).

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[PubMed]

1991 (1)

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, ““Optical constants of the noble metals,” Phys. Rev. B Condens,” Matter Mater. 6(12), 4370–4379 (1972).

1969 (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).

1951 (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” J. Discuss. Faraday Soc. 11, 55–75 (1951).

Altenburg, B. S. F.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).

Amendola, V.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[PubMed]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[PubMed]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).

Barreto, A. R. J.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

Battie, Y.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

Bjonnes, A. C.

M. S. Golden, A. C. Bjonnes, and R. M. Georgiadis, “Distance and wavelength dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging,” J. Phys. Chem. C 114(19), 8837–8843 (2010).

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).

Carvalho, R. S.

Celichowski, G.

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

Chaoui, N.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

Christy, R. W.

P. B. Johnson and R. W. Christy, ““Optical constants of the noble metals,” Phys. Rev. B Condens,” Matter Mater. 6(12), 4370–4379 (1972).

Cicchi, S.

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

Cichomski, M.

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

Cremona, M.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

T. Del Rosso, J. E. Sánchez, R. S. Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,” Opt. Express 22(16), 18914–18923 (2014).
[PubMed]

D’Ágostino, R.

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[PubMed]

de Almeida, M. P.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

de Bruijn, H. E.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).

Del Rosso, T.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

T. Del Rosso, J. E. Sánchez, R. S. Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,” Opt. Express 22(16), 18914–18923 (2014).
[PubMed]

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

Eaton, P.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

En Naciri, A.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

Ermini, M. L.

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

Fragstein, C. V.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).

Furuya, K.

Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).

García, M. A.

M. A. García, J. Llopis, and S. E. Paje, “A simple model to evaluate the optical absorption spectrum for small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5), 313–320 (1999).

Georgiadis, R.

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130(4–6), 260–266 (1996).

Georgiadis, R. M.

M. S. Golden, A. C. Bjonnes, and R. M. Georgiadis, “Distance and wavelength dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging,” J. Phys. Chem. C 114(19), 8837–8843 (2010).

Ghini, G.

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

Giorgetti, E.

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

Golden, M. S.

M. S. Golden, A. C. Bjonnes, and R. M. Georgiadis, “Distance and wavelength dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging,” J. Phys. Chem. C 114(19), 8837–8843 (2010).

Greve, J.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).

Grobelny, J.

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

Hillier, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” J. Discuss. Faraday Soc. 11, 55–75 (1951).

Homola, J.

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuat. B. 54(1-2), 16–24 (1999).

Jablonku, J.

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, ““Optical constants of the noble metals,” Phys. Rev. B Condens,” Matter Mater. 6(12), 4370–4379 (1972).

Kajikawa, K.

Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).

Kooyman, R. P. H.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuat. B. 54(1-2), 16–24 (1999).

Kreibig, U.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[PubMed]

Liz-Marzan, L. M.

A. Shiohara, Y. Wang, and L. M. Liz-Marzan, “Recent Approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).

Llopis, J.

M. A. García, J. Llopis, and S. E. Paje, “A simple model to evaluate the optical absorption spectrum for small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5), 313–320 (1999).

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[PubMed]

Lyon, L. A.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modifiothered Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).

Margheri, G.

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

Meneghetti, M.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[PubMed]

Muniz-Miranda, M.

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

Musick, M. D.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

Natan, M. J.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modifiothered Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).

Neves, C.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[PubMed]

Paje, S. E.

M. A. García, J. Llopis, and S. E. Paje, “A simple model to evaluate the optical absorption spectrum for small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5), 313–320 (1999).

Pandoli, O.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

T. Del Rosso, J. E. Sánchez, R. S. Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,” Opt. Express 22(16), 18914–18923 (2014).
[PubMed]

Pellegri, N.

L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).

Pena, D. J.

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modifiothered Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

Pereira, E.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

Peterlinz, K. A.

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130(4–6), 260–266 (1996).

Piwonski, I.

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

Quaresma, P.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

Reiss, B. D.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

Resano-Garcia, A.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

Rogowski, J.

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

Rosso, M. D.

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

Rosso, T. D.

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

Ruppin, R.

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182(4–6), 273–279 (2000).

Sánchez, J. E.

Sanctis, O.

L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).

Scaffardi, L. B.

L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).

Shimojo, M.

Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).

Shiohara, A.

A. Shiohara, Y. Wang, and L. M. Liz-Marzan, “Recent Approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).

Smith, P. C.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

Soares, C.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

Sottini, S.

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

Špacková, B.

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

Špringer, T.

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

Stevenson, P. C.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” J. Discuss. Faraday Soc. 11, 55–75 (1951).

Tocho, J. O.

L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).

Trigari, S.

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

Turkevich, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” J. Discuss. Faraday Soc. 11, 55–75 (1951).

Uchiho, Y.

Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).

Walpita, L. M.

Wang, Y.

A. Shiohara, Y. Wang, and L. M. Liz-Marzan, “Recent Approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).

West, P.

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuat. B. 54(1-2), 16–24 (1999).

Zaman, Q.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

Zhang, Y.

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

Anal. Bioanal. Chem. (1)

M. Muniz-Miranda, T. Del Rosso, E. Giorgetti, G. Margheri, G. Ghini, S. Cicchi, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push-pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400(2), 361–367 (2011).
[PubMed]

Anal. Chem. (1)

T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters,” Anal. Chem. 86(20), 10350–10356 (2014).
[PubMed]

Appl. Surf. Sci. (2)

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A. R. J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure,” Appl. Surf. Sci. 442, 759–766 (2018).

I. Piwoński, J. Grobelny, M. Cichomski, G. Celichowski, and J. Rogowski, “Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface,” Appl. Surf. Sci. 242(1–2), 147–153 (2005).

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[PubMed]

Chem. Phys. Lett. (1)

M. A. García, J. Llopis, and S. E. Paje, “A simple model to evaluate the optical absorption spectrum for small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5), 313–320 (1999).

Chem. Rev. (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[PubMed]

J. Chem. Phys. (1)

Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. En Naciri, “Extended Maxwell-Garnett-Mie theory formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix,” J. Chem. Phys. 140, 044705 (2014).

J. Discuss. Faraday Soc. (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” J. Discuss. Faraday Soc. 11, 55–75 (1951).

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. Chem. (1)

A. Shiohara, Y. Wang, and L. M. Liz-Marzan, “Recent Approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).

J. Phys. Chem. B (1)

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modifiothered Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).

J. Phys. Chem. C (2)

M. S. Golden, A. C. Bjonnes, and R. M. Georgiadis, “Distance and wavelength dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging,” J. Phys. Chem. C 114(19), 8837–8843 (2010).

Y. Uchiho, M. Shimojo, K. Furuya, and K. Kajikawa, “Optical response of gold-nanoparticle-amplified surface plasmon resonance spectroscopy,” J. Phys. Chem. C 114(11), 4816–4824 (2010).

Matter Mater. (1)

P. B. Johnson and R. W. Christy, ““Optical constants of the noble metals,” Phys. Rev. B Condens,” Matter Mater. 6(12), 4370–4379 (1972).

Nanotechnology (1)

L. B. Scaffardi, N. Pellegri, O. Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16(1), 158–163 (2005).

Opt. Commun. (3)

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5–6), 425–432 (1991).

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy,” Opt. Commun. 130(4–6), 260–266 (1996).

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182(4–6), 273–279 (2000).

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 193408 (2002).

Sens. Actuat. B. (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuat. B. 54(1-2), 16–24 (1999).

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuat. B. 54(1-2), 118–124 (1999).

Ultramicroscopy (1)

P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. de Almeida, E. Pereira, and P. West, “A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles,” Ultramicroscopy 182, 179–190 (2017).
[PubMed]

Z. Phys. (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224(4), 307–323 (1969).

Other (7)

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley, 2011).

M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info .

N. Souza, J. Costa, R. Santos, A. Cruz, T. Del Rosso, and K. Costa, “Modal analysis of surface plasmon resonance sensor coupled to periodic array of core-shell metallic nanoparticles,” Resonance (InTech, 2017).

T. Del Rosso, W. Margulis, G. Fontana, and I. C. S. Carvalho, Metal Nanostructures for Photonics, (Elsevier, 2018), Chap.10, pp. 223–259.

J. Souza, Q. Zaman, K.Q. Costa, V. Dmitriev, O. Pandoli, G. Fontes, and T. Del Rosso, “Limits of the Effective Medium Theory in Particle Amplified Surface Plasmon Resonance Spectroscopy Biosensors,” to appear in Sensors (2019).

G. Margheri, S. Trigari, S. Sottini, R. D’Ágostino, T. D. Rosso, and M. D. Rosso, “The binding of EGFR to gm13 hosted in lipid raft-like biomembranes insighted by plasmonic resonance techniques,” J. Sens. (2015), doi:.
[Crossref]

I. Capek, Noble Metal Nanoparticles: Preparation, Composite Nanostructures, Biodecoration and Collective Properties (Springer, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Two-color SPR nanosizer in the Kreschtmann configuration. The thickness of the nanocomposite layer teff is considered equal to the statistical mean diameter <2r> of the AuNPs.
Fig. 2
Fig. 2 (a) TEM image of the AuNPs and (b) AFM image on 1 μm x 1 μm region of APTMS functionalized SiO2 thin film surface after interaction with the AuNPs. The inset of the images show the statistical AuNPs size distribution obtained using (a) TEM and (b) AFM microscopy over a set of 400 data points. Log normal distribution is used to obtain the best fit on the experimental statistical distribution, represented as continuous line. (c) Comparison between the experimental (open grey circles) and theoretical (continuous black line) extinction spectra of the colloidal dispersion of AuNPs in water. The fit on the experimental data and the theoretical curves were obtained applying the Mie theory with both dipolar and quadrupolar orders [19]. The vertical dashed lines represent the experimental excitation wavelengths used for the demonstration of the two-color SPR nanosizer.
Fig. 3
Fig. 3 (a) Experimental SPR minimum angle profiles at λ1 (black) and λ2 (grey) before (open circles) and after (fill circles) the deposition of the SAM of AuNPs. The observed SPR angle shift are ∆θλ1 = 0.0471° and ∆θλ2 = 0.0186°. (b) Curves of the possible values in the plane εeff Vs <r> = teff /2 at the wavelengths λ1 and λ2. The intersection point of the curves represents the real value, obtained by shifting the curves using the parameter Q λ 1 , λ 2 = 1.266 calculated from Eq. (5).
Fig. 4
Fig. 4 Curves in the plane ε e f f Vs < r > = t e f f / 2 corresponding to a variation δϵr of the dielectric constant of the thin layer of gold supporting the plasma wave. (a) + 0.5%, (b) – 0.5%. The experimental accuracy in the determination of the main radius by SPR spectroscopy is ± 0.5 nm, corresponding to Δrexperimental ≈7%.
Fig. 5
Fig. 5 (a) Percentage deviation Δrdensity between the value <r>TEM and the value of the average radius <r>SPR obtained by the application of the two-color method depending on σ. (b) Percentage deviation Δrdispersion between <r>log-normal and <r>SPR obtained by the application of the two-color method depending on the relative radius standard deviation δrel = (δlog-normal/<r>log-normal).
Fig. 6
Fig. 6 Theoretical behaviour of SAM of monodisperse AuNPs with same optical density τ ≈τ λ1 . (a) Surface density σ(r) (black points, left Y-axes) and mass surface density of gold σmass(r) expressed in ng/μm2 (grey circles, right Y-axes) in function of the radius r of the AuNPs. (b) Shift of the angle of resonance Δθ (r) at both the excitation wavelengths λ1 (black points) and λ2 (grey circles) after the deposition of the associated mass surface density of gold σmass(r). The dashed horizontal red-line is set in correspondence of ΔθSPR = 0.01°.

Tables (2)

Tables Icon

Table 1 Mean value < r > and standard deviation δ of the statistical distribution of radius of the citrate stabilized AuNPs measured using different experimental techniques.

Tables Icon

Table 2 Experimental values of the optical parameters of the SPR sensing platform obtained using the experimental procedure described in [11]. The refractive index of water and SF4 were taken from [20].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε e f f = ε m + A C + B D C 2 + D 2 and ε e f f = B C A D C 2 + D 2 ,
A = f ( ε ε m ) , B = f ε ,
C = ε m + ( ε ε m ) / 3 f ( ε ε m ) / 3 ε m ,
D = ε / 3 f ε / 3 ε .
ε e f f ε m = f [ ( ε ε m ) C + ε D C 2 + D 2 ] , ε e f f 0 ,
Q λ 1 , λ 2 = ( ε e f f ε m ) λ 1 ( ε e f f ε m ) λ 2 = ( ε ε m ) λ 1 × C λ 1 + ( ε × D ) λ 1 ( ε ε m ) λ 2 × C λ 2 + ( ε × D ) λ 2 × C λ 2 2 + D λ 2 2 C λ 1 2 + D λ 1 2
n ( r ) = 1 2 π w r e - [ ln ( r ) - ln ( r c ) ] 2 2 w 2
f = ( ε eff ε m ) ( ε i 2 + ε r 2 + 4 ( ε r + ε m ) ) 3 ( ε i 2 2 ε m 2 + ε r ( ε r + ε m ) )
f S t a t = N < V P > V CL = σ < V P > 2 h = 2 π σ 3 h 0 h r 3 n ( r ) d r
f S t a t = 2 π σ 3 w h 0 h r 2 e - [ ln ( r ) - ln ( r c ) ] 2 2 w 2 d r
n ( h ) n ( r c ) = e - [ ln ( h r c ) ] 2 = e n
h = r c e - w 2 + 2 n w 2 + w 4
τ ( λ , σ , r ) S A M = ( log e ) N V σ e x t ( λ , r ) 2 r = ( log e ) σ σ e x t ( λ , r )
ε e f f = n e f f 2 κ e f f 2 n w a t e r 2 ( 1 + 2 Δ n n w a t e r ) κ e f f 2 = n w a t e r 2 + ( 2 n w a t e r Δ n κ e f f 2 ) ε e f f n w a t e r 2 + 2 n w a t e r Δ n
2 ω c κ e f f = e ( λ ) = σ σ a b s < 2 r > < σ σ e x t < 2 r >

Metrics