Abstract

Optical sensing has shown great potential for both quantitative and qualitative analysis of compounds. In particular sensors which are capable of detecting changes in refractive index at a surface as well as in bulk material have received much attention. Much of the recent research has focused on developing technologies that enable such sensors to be deployed in an integrated photonic device. In this work we demonstrate experimentally, using a sub-wavelength grating the detection of ethanol in aqueous solution by interrogating its large absorption band at 9.54 μm. Theoretical investigation of the operating principle of our grating sensor shows that in general, as the total field interacting with the analyte is increased, the corresponding absorption is also increased. We also theoretically demonstrate how sub-wavelength gratings can detect changes in the real part of the refractive index, similar to conventional refractive index (RI) sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

Resonant gratings with an etch-stop layer and a fabrication-error tolerant design

Brian Hogan, Liam Lewis, Javier Romero-Vivas, Tomasz J. Ochalski, and Stephen P. Hegarty
Opt. Express 26(10) 13205-13213 (2018)

A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors

Byung-Wook Yoo, Mischa Megens, Tianbo Sun, Weijian Yang, Connie J. Chang-Hasnain, David A. Horsley, and Ming C. Wu
Opt. Express 22(16) 19029-19039 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5, 654–661 (2017).
    [Crossref]
  2. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
    [Crossref] [PubMed]
  3. J. Langer, S. M. Novikov, and L. M. Liz-Marzan, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26, 322001 (2015).
    [Crossref] [PubMed]
  4. W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
    [Crossref]
  5. P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
    [Crossref]
  6. Q. Yang, L. Qin, G. Cao, C. Zhang, and X. Li, “Refractive index sensor based on graphene-coated photonic surface-wave resonance,” Opt. Lett. 43, 639–642 (2018).
    [Crossref] [PubMed]
  7. Y. Liu, Y. Li, M. Li, and J.-J. He, “High-sensitivity and wide-range optical sensor based on three cascaded ring resonators,” Opt. Express 25, 972–978 (2017).
    [Crossref] [PubMed]
  8. W. Yang, S. Song, X. Yi, S. X. Chew, L. Li, and L. Nguyen, “Silicon-on-insulator microring resonator sensor based on an amplitude comparison sensing function,” Opt. Lett. 43, 70–73 (2018).
    [Crossref] [PubMed]
  9. Y. Liu, G. Wu, R. Gao, and S. Qu, “High-quality Mach–Zehnder interferometer based on a microcavity in single-multi-single mode fiber structure for refractive index sensing,” Appl. Opt. 56, 847–853 (2017).
    [Crossref] [PubMed]
  10. Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
    [Crossref]
  11. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919–921 (1994).
    [Crossref] [PubMed]
  12. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995).
    [Crossref] [PubMed]
  13. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
    [Crossref]
  14. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
    [Crossref] [PubMed]
  15. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888–10895 (2012).
    [Crossref] [PubMed]
  16. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref] [PubMed]
  17. A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
    [Crossref] [PubMed]
  18. B. Hogan, S. P. Hegarty, L. Lewis, J. Romero-Vivas, T. J. Ochalski, and G. Huyet, “Realization of high-contrast gratings operating at 10μm,” Opt. Lett. 41, 5130–5133 (2016).
    [Crossref] [PubMed]
  19. B. Hogan, L. Lewis, J. Romero-Vivas, T. J. Ochalski, and S. P. Hegarty, “Resonant gratings with an etch-stop layer and a fabrication-error tolerant design,” Opt. Express 26, 13205–13213 (2018).
    [Crossref] [PubMed]
  20. Y. Kato, M. Kikugawa, and E. Sudo, “Attenuated Total Reflection Surface-Enhanced Infrared Absorption (ATR SEIRA) spectroscopy for the analysis of fatty acids on silver nanoparticles,” Appl. Spectrosc. 71, 2083–2091 (2017).
    [Crossref] [PubMed]
  21. C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26, 12169–12179 (2018).
    [Crossref] [PubMed]
  22. N. J. Harrick, “Electric field strengths at totally reflecting interfaces,” J. Opt. Soc. Am. 55, 851–857 (1965).
    [Crossref]
  23. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [Crossref]
  24. M. G. Moharam, T. K. Gaylord, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [Crossref]
  25. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [Crossref]
  26. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Physics Communications 183, 2233–2244 (2012).
    [Crossref]
  27. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors(SpringerUS, 1999).
  28. E. Palik, Handbook of Optical Constants of Solids(Academic press, 1998).
  29. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798 (2012).
    [Crossref] [PubMed]
  30. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012).
    [Crossref] [PubMed]
  31. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  32. E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Optical Materials 60, 137–141 (2016).
    [Crossref]
  33. A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE Journal of Quantum Electronics 51, 1–8 (2015).
  34. R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11, 1476–1488 (2011).
    [Crossref]
  35. J. G. Wangüemert-Pérez, P. Cheben, Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., Molina-Fernández, I., Xu, D.-X., Schmid, and J. H., “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
    [Crossref]
  36. Camo-Software, “Unscrambler X Data analysis software package V10.5.”
  37. Agilent Inc., “Highest available signal-to-noise performance, delivering superior sensitivity and analytical performance,” https://www.agilent.com/cs/library/technicaloverviews/public/si-1353.pdf(11-26-2018) .

2018 (4)

2017 (7)

Y. Kato, M. Kikugawa, and E. Sudo, “Attenuated Total Reflection Surface-Enhanced Infrared Absorption (ATR SEIRA) spectroscopy for the analysis of fatty acids on silver nanoparticles,” Appl. Spectrosc. 71, 2083–2091 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Li, M. Li, and J.-J. He, “High-sensitivity and wide-range optical sensor based on three cascaded ring resonators,” Opt. Express 25, 972–978 (2017).
[Crossref] [PubMed]

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
[Crossref]

Y. Liu, G. Wu, R. Gao, and S. Qu, “High-quality Mach–Zehnder interferometer based on a microcavity in single-multi-single mode fiber structure for refractive index sensing,” Appl. Opt. 56, 847–853 (2017).
[Crossref] [PubMed]

Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
[Crossref]

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5, 654–661 (2017).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

2016 (2)

B. Hogan, S. P. Hegarty, L. Lewis, J. Romero-Vivas, T. J. Ochalski, and G. Huyet, “Realization of high-contrast gratings operating at 10μm,” Opt. Lett. 41, 5130–5133 (2016).
[Crossref] [PubMed]

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Optical Materials 60, 137–141 (2016).
[Crossref]

2015 (2)

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE Journal of Quantum Electronics 51, 1–8 (2015).

J. Langer, S. M. Novikov, and L. M. Liz-Marzan, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26, 322001 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (4)

2011 (1)

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11, 1476–1488 (2011).
[Crossref]

2010 (2)

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
[Crossref]

1996 (1)

1995 (3)

1994 (1)

1973 (1)

1965 (1)

Adachi, S.

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors(SpringerUS, 1999).

Alda, J.

Aleksandrova, A.

Alonso-Ramos,

Bimberg, D. H.

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE Journal of Quantum Electronics 51, 1–8 (2015).

Brandstetter, M.

Cao, G.

Chang-Hasnain, C. J.

Chase, C.

Chashnikova, M.

Cheben, P.

Chew, S. X.

Cuadrado, A.

Danz, N.

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
[Crossref]

Dell’Oro, A.

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Optical Materials 60, 137–141 (2016).
[Crossref]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
[Crossref]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11, 1476–1488 (2011).
[Crossref]

Elshorbagy, M. H.

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Physics Communications 183, 2233–2244 (2012).
[Crossref]

Fedosenko, O.

Flores, Y.

Gao, L.

Gao, R.

Gasser, C.

Gaylord, T. K.

Grann, E. B.

Gruska, B.

Hale, G. M.

Halir,

Harasek, M.

Harrick, N. J.

He, J.-J.

Hegarty, S. P.

Hofmann, W. H. E.

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE Journal of Quantum Electronics 51, 1–8 (2015).

Hogan, B.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
[Crossref]

Huyet, G.

Karagodsky, V.

Kato, Y.

Kikugawa, M.

Kilgus, J.

Kischkat, J.

Klemm, A. B.

Klinkmüller, M.

Kong, L. X.

Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
[Crossref]

Kong, W.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
[Crossref]

Krauss, T. F.

Lalanne, P.

Langer, J.

J. Langer, S. M. Novikov, and L. M. Liz-Marzan, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26, 322001 (2015).
[Crossref] [PubMed]

Lemarchand, F.

Lendl, B.

Lequime, M.

Lewis, L.

Li, L.

Li, M.

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

Li, S.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
[Crossref]

Li, X.

Li, Y.

Liu, A.

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE Journal of Quantum Electronics 51, 1–8 (2015).

Liu, J.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Physics Communications 183, 2233–2244 (2012).
[Crossref]

Liu, Y.

Liz-Marzan, L. M.

J. Langer, S. M. Novikov, and L. M. Liz-Marzan, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26, 322001 (2015).
[Crossref] [PubMed]

Lu, F.

Machulik, S.

Magnusson, R.

Martins, E. R.

Masselink, W. T.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
[Crossref]

Michelotti, F.

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
[Crossref]

Moharam, M. G.

Molina-Fernández,

Monastyrskyi, G.

Morris, G. M.

Munzert, P.

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
[Crossref]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
[Crossref]

Nguyen, L.

Novikov, S. M.

J. Langer, S. M. Novikov, and L. M. Liz-Marzan, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26, 322001 (2015).
[Crossref] [PubMed]

O’Faolain, L.

Ochalski, T. J.

Ortega-Moñux,

Palik, E.

E. Palik, Handbook of Optical Constants of Solids(Academic press, 1998).

Pérez-Galacho,

Peters, S.

Pommet, D. A.

Qin, L.

Qu, S.

Querry, M. R.

Romero-Vivas, J.

Sani, E.

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Optical Materials 60, 137–141 (2016).
[Crossref]

Schmid,

Sedgwick, F. G.

Semtsiv, M.

Sinibaldi, A.

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
[Crossref]

Song, S.

Stellinga, D.

Sudo, E.

Wan, Y.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
[Crossref]

Wang, B. T.

Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
[Crossref]

Wang, Q.

Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
[Crossref]

Wang, S. S.

Wangüemert-Pérez, J. G.

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11, 1476–1488 (2011).
[Crossref]

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

Wu, G.

Xu,

Yang, Q.

Yang, W.

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

Yi, X.

Yu, L.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

Zhang, C.

Zhao, Y.

Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
[Crossref]

Zheng, Z.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
[Crossref]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11, 1476–1488 (2011).
[Crossref]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Computer Physics Communications (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Computer Physics Communications 183, 2233–2244 (2012).
[Crossref]

IEEE Journal of Quantum Electronics (1)

A. Liu, W. H. E. Hofmann, and D. H. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE Journal of Quantum Electronics 51, 1–8 (2015).

IEEE Photonics Technology Letters (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters 16, 518–520 (2004).
[Crossref]

IEEE Transactions on Instrumentation and Measurement (1)

Q. Wang, B. T. Wang, L. X. Kong, and Y. Zhao, “Comparative analyses of bi-tapered fiber Mach Zehnder interferometer for refractive index sensing,” IEEE Transactions on Instrumentation and Measurement 66, 2483–2489 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Nanoscale Research Letters (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating,” Nanoscale Research Letters 121 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

J. Langer, S. M. Novikov, and L. M. Liz-Marzan, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26, 322001 (2015).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Optical Materials (1)

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Optical Materials 60, 137–141 (2016).
[Crossref]

Photon. Res. (1)

Sensors (1)

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11, 1476–1488 (2011).
[Crossref]

Sensors and Actuators B: Chemical (1)

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sensors and Actuators B: Chemical 193, 467–471 (2014).
[Crossref]

Surface and Coatings Technology (1)

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, “Multilayer coatings for Bloch surface wave optical biosensors,” Surface and Coatings Technology 314, 79–84 (2017). Selected papers from the Society of Vacuum Coaters 59th Annual Technical Conference.
[Crossref]

Other (4)

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors(SpringerUS, 1999).

E. Palik, Handbook of Optical Constants of Solids(Academic press, 1998).

Camo-Software, “Unscrambler X Data analysis software package V10.5.”

Agilent Inc., “Highest available signal-to-noise performance, delivering superior sensitivity and analytical performance,” https://www.agilent.com/cs/library/technicaloverviews/public/si-1353.pdf(11-26-2018) .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Log10 of time averaged E2 field in ATR device, θi = 25°, TM polarisation. (b) Log10 of time averaged E2 field in HCG, normally incident TM polarised light. Field values are calculated at 9.54 μm using Rigorous Coupled Wave Analysis (RCWA).
Fig. 2
Fig. 2 (a) Schematic diagram of ES-ZCG structure. (b) Schematic diagram of HCG structure.
Fig. 3
Fig. 3 (a) Normalised reflectivity spectra for TM polarised optimised HCG with ethanol concentration between 0 - 100%. (b) Reflectivity from optimised HCG with ethanol concentrations between 0 - 100%. (c) Normalised reflectivity spectra for a 5-reflection ATR with ethanol concentration between 0 - 20%. (d) Reflectivity for 5-reflection ATR with ethanol concentration between 0 - 100%. (e) Extinction coefficient (k) for ethanol and water as a function of wavelength.
Fig. 4
Fig. 4 Sensitivity vs total, normalised, time-averaged E2 field for various grating geometries and a reference line showing sensitivity of an ATR with θi = 25° at wavelength of 9.54 μm.
Fig. 5
Fig. 5 (a) Normalised reflectivity spectra for TE polarised HCG with ethanol concentration between 0 - 100%. (b) Raw HCG reflectivity profiles for ethanol concentration between 0 - 100% under TE polarised incident light. (c) Raw HCG reflectivities where imaginary part of the refractive index remains constant for all ethanol concentrations. (d) Normalised reflectivity of TE polarised HCG as a function of ethanol concentration at 9.54 μm.
Fig. 6
Fig. 6 (a) Schematic diagam of experimental setup. Quantum Cascade Laser (QCL), Gold-Coated Prism Reflector (GCPR), Longwave InfraRed (LIR) detector (MSL-12 HgCdTe commercially sourced from Infrared Assoicates). (b) Simulated reflectivities of measured grating for ethanol and water under TM polarised light. (c) Simulated normalised reflection spectrum for HCG with ethanol concentration between 0 - 100% for TM polarised light. (d) Measured NR spectrum for HCG with ethanol concentration between 0 - 100% for TM polarised light.
Fig. 7
Fig. 7 (a) Simulated normalised reflection spectrum for ES-ZCG with ethanol concentration between 0 - 100% under TE polarised light. (b) Measured normalised reflection spectrum for ES-ZCG with ethanol concentration between 0 - 100% under TE polarised light. (c) Raw reflectivities of fabricated ES-ZCG for pure water and pure ethanol under TE polarised light. (d) Measured normalised reflectivity spectra after use of filtering algorithm in Unscramblr software.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N R = R a n a l y t e R w a t e r

Metrics