Abstract

Sub-bandgap near-infrared silicon (Si) photodetectors are key elements in integrated Si photonics. We demonstrate such a Si photodetector based on a black Si (b-Si)/Ag nanoparticles (Ag-NPs) Schottky junction. This photodetector synergistically employs the mechanisms of inner photoemission, light-trapping, and surface-plasmon-enhanced absorption to efficiently absorb the sub-bandgap light and generate a photocurrent. The b-Si/Ag-NPs sample was prepared by means of wet chemical etching. Compared to those of a planar-Si/Ag thin-film Schottky photodetector, the responsivities of the b-Si/Ag-NPs photodetector were greatly enhanced, being 0.277 and 0.226 mA/W at a reversely biased voltage of 3 V for 1319- and 1550-nm light, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors

Mohammad Alavirad, Anthony Olivieri, Langis Roy, and Pierre Berini
Opt. Express 24(20) 22544-22554 (2016)

Ultra-compact silicon waveguide-integrated Schottky photodetectors using perfect absorption from tapered metal nanobrick arrays

Hyeokbin Kwon, Jong-Bum You, Yeonghoon Jin, and Kyoungsik Yu
Opt. Express 27(12) 16413-16424 (2019)

Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime

Boris Desiatov, Ilya Goykhman, Noa Mazurski, Joseph Shappir, Jacob B. Khurgin, and Uriel Levy
Optica 2(4) 335-338 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
    [Crossref] [PubMed]
  2. M. Casalino, “Near-infrared sub-bandgap all-silicon photodetectors: a review,” Int. J. Opt. App. 2(1), 1–16 (2012).
  3. M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
    [Crossref]
  4. M. Alavirad, L. Roy, and P. Berini, “Surface plasmon enhanced photodetectors based on internal photoemission,” J. Photon. Energy 6(4), 042511 (2016).
    [Crossref]
  5. S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
    [Crossref]
  6. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  7. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  8. M. K. Lee, C. H. Chu, Y. H. Wang, and S. M. Sze, “1.55-µm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector,” Opt. Lett. 26(3), 160–162 (2001).
    [Crossref] [PubMed]
  9. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
    [Crossref]
  10. Y. Tanaka, N. Sako, T. Kurokawa, H. Tsuda, and M. Takeda, “Profilometry based on two-photon absorption in a silicon avalanche photodiode,” Opt. Lett. 28(6), 402–404 (2003).
    [Crossref] [PubMed]
  11. B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
    [Crossref]
  12. A. Knights, A. House, R. MacNaughton, and F. Hopper, “Optical power monitoring function compatible with single chip integration on silicon-on-insulator,” in OSA Trends in Optics and Photonics (TOPS) 86, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, 2003), pp. 705−706.
    [Crossref]
  13. areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
    [Crossref]
  14. P. K. Giri and Y. N. Mohapatra, “Thermal stability of defect complexes due to high dose MeV implantation in silicon,” Mat. Sci. Eng. B-Solid 71(1-3), 327–332 (2000).
    [Crossref]
  15. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
    [Crossref]
  16. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
    [Crossref] [PubMed]
  17. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
    [Crossref] [PubMed]
  18. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
    [Crossref]
  19. J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011).
    [Crossref]
  20. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
    [Crossref]
  21. Y. Qiu, H. C. Hao, J. Zhou, and M. Lu, “A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays,” Opt. Express 20(20), 22087–22094 (2012).
    [Crossref] [PubMed]
  22. M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
    [Crossref]
  23. M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
    [Crossref]
  24. Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
    [Crossref] [PubMed]
  25. P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
    [Crossref]
  26. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
    [Crossref]
  27. JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
    [Crossref]
  28. Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
    [Crossref] [PubMed]
  29. L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
    [Crossref] [PubMed]
  30. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
    [Crossref] [PubMed]
  31. P. N. Prasad, Nanophotonics (Wiley-Interscience, 2004).
  32. L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
    [Crossref] [PubMed]
  33. S. L. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems,” Opt. Express 21(12), 14591–14605 (2013).
    [Crossref] [PubMed]

2016 (5)

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

M. Alavirad, L. Roy, and P. Berini, “Surface plasmon enhanced photodetectors based on internal photoemission,” J. Photon. Energy 6(4), 042511 (2016).
[Crossref]

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

2015 (4)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

2013 (3)

S. L. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems,” Opt. Express 21(12), 14591–14605 (2013).
[Crossref] [PubMed]

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (1)

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011).
[Crossref]

2010 (2)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

2009 (1)

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

2008 (4)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
[Crossref]

2006 (1)

areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
[Crossref]

2003 (1)

2002 (1)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

2001 (1)

2000 (2)

G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

P. K. Giri and Y. N. Mohapatra, “Thermal stability of defect complexes due to high dose MeV implantation in silicon,” Mat. Sci. Eng. B-Solid 71(1-3), 327–332 (2000).
[Crossref]

Aberle, G.

G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

Alavirad, M.

M. Alavirad, L. Roy, and P. Berini, “Surface plasmon enhanced photodetectors based on internal photoemission,” J. Photon. Energy 6(4), 042511 (2016).
[Crossref]

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Berini, P.

M. Alavirad, L. Roy, and P. Berini, “Surface plasmon enhanced photodetectors based on internal photoemission,” J. Photon. Energy 6(4), 042511 (2016).
[Crossref]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Bian, J. M.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Bingel, A.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Branz, H. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Cai, H.

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

Cao, K.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Casalino, M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

M. Casalino, “Near-infrared sub-bandgap all-silicon photodetectors: a review,” Int. J. Opt. App. 2(1), 1–16 (2012).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

Chen, H. T.

Chen, L. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Chen, X.

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Chen, Z.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Cheung, W. Y.

areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
[Crossref]

Chow, C. W.

areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
[Crossref]

Chu, C. H.

Coppola, G.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

De La Rue, R. M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Desiatov, B.

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Du, X.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Gielis, J. J. H.

JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
[Crossref]

Giri, P. K.

P. K. Giri and Y. N. Mohapatra, “Thermal stability of defect complexes due to high dose MeV implantation in silicon,” Mat. Sci. Eng. B-Solid 71(1-3), 327–332 (2000).
[Crossref]

Goykhman, I.

Guo, G. Y.

Halas, N. J.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Hao, H. C.

Heinonen, J.

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Hildebrandt, M.

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011).
[Crossref]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Hoex, JB.

JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
[Crossref]

Iodice, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

Jia, G.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Juntunen, M. A.

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Käsebier, T.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Kessels, W. M. M.

JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
[Crossref]

Khurgin, J.

Khurgin, J. B.

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Kley, E.-B.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Knights, A. P.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Kurokawa, T.

Kuznetsov, A. Y.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Kwong, D. L.

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Lai, T.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Lee, M. K.

Levy, U.

Li, H.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Li, P.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Li, Z.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Liang, H.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Liu, A. M.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Liu, X.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Liu, Y.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
[Crossref]

Lo, G. Q.

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Logan, D. F.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Lu, C. X.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Lu, M.

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

Y. Qiu, H. C. Hao, J. Zhou, and M. Lu, “A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays,” Opt. Express 20(20), 22087–22094 (2012).
[Crossref] [PubMed]

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011).
[Crossref]

Ma, L.

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

Mazurski, N.

Mei, Z.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Mohapatra, Y. N.

P. K. Giri and Y. N. Mohapatra, “Thermal stability of defect complexes due to high dose MeV implantation in silicon,” Mat. Sci. Eng. B-Solid 71(1-3), 327–332 (2000).
[Crossref]

Nordlander, P.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Patzig, C.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Qiu, Y.

Ren, C.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Rendina, I.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

Repo, P.

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Roy, L.

M. Alavirad, L. Roy, and P. Berini, “Surface plasmon enhanced photodetectors based on internal photoemission,” J. Photon. Energy 6(4), 042511 (2016).
[Crossref]

Sako, N.

Savin, H.

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Schrempel, F.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Shappir, J.

Shi, B.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Shi, W.

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

Sirleto, L.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Steglich, M.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Stradins, P.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Sun, J.

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

Sun, S. L.

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

S. L. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems,” Opt. Express 21(12), 14591–14605 (2013).
[Crossref] [PubMed]

Sun, T.

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

Sze, S. M.

Takeda, M.

Tan, X.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Tanaka, Y.

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Tsang, H. K.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Tsuda, H.

Tünnermann, A.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Vähänissi, V.

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Valluru, D.

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

van de Sanden, M. C. M.

JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
[Crossref]

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, L. X.

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

Wang, S.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, W.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Wang, Y.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Wang, Y. H.

Wang, Y. X.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Wei, Y.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Ye, Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Yu, M. B.

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Zhang, F.

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Zhang, T. N.

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

Zhang, Y.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Zhao, J.

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Zhao, Z. C.

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, W. J.

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Zhou, J.

Y. Qiu, H. C. Hao, J. Zhou, and M. Lu, “A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays,” Opt. Express 20(20), 22087–22094 (2012).
[Crossref] [PubMed]

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011).
[Crossref]

Zhou, Z. Q.

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

Zhu, S. Y.

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

Zilk, M.

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

Appl. Phys. B-Lasers O. (1)

B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, “Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (1̄10) plane,” Appl. Phys. B-Lasers O. 93(4), 873–877 (2008).
[Crossref]

Appl. Phys. Lett. (3)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008).
[Crossref]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Appl. Surf. Sci. (1)

P. Li, Y. Wei, Z. C. Zhao, X. Tan, J. M. Bian, Y. X. Wang, C. X. Lu, and A. M. Liu, “Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification,” Appl. Surf. Sci. 357(B), 1830–1835 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

IEEE Photonic. Tech. L. (1)

areY. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photonic. Tech. L. 18(17), 1882–1884 (2006).
[Crossref]

Int. J. Opt. App. (1)

M. Casalino, “Near-infrared sub-bandgap all-silicon photodetectors: a review,” Int. J. Opt. App. 2(1), 1–16 (2012).

J. Appl. Phys. (3)

JB. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys. 104(11), 113703 (2008).
[Crossref]

M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “A normal-incidence PtSi photoemissive detector with black silicon light-trapping,” J. Appl. Phys. 114(18), 183102 (2013).
[Crossref]

J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011).
[Crossref]

J. Chem. Phys. (1)

L. Ma, T. Sun, H. Cai, Z. Q. Zhou, J. Sun, and M. Lu, “Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis,” J. Chem. Phys. 143(8), 084706 (2015).
[Crossref] [PubMed]

J. Photon. Energy (1)

M. Alavirad, L. Roy, and P. Berini, “Surface plasmon enhanced photodetectors based on internal photoemission,” J. Photon. Energy 6(4), 042511 (2016).
[Crossref]

Laser Photonics Rev. (1)

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Mat. Sci. Eng. B-Solid (1)

P. K. Giri and Y. N. Mohapatra, “Thermal stability of defect complexes due to high dose MeV implantation in silicon,” Mat. Sci. Eng. B-Solid 71(1-3), 327–332 (2000).
[Crossref]

Nanoscale Res. Lett. (1)

L. X. Wang, Z. Q. Zhou, T. N. Zhang, X. Chen, and M. Lu, “High fill factors of Si solar cells achieved by using an inverse connection between MOS and PN junctions,” Nanoscale Res. Lett. 11, 453 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology 27(14), 145203 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, and H. Savin, “Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction,” Nat. Photonics 10(12), 777–781 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Prog. Photovolt. Res. Appl. (1)

G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

Sci. Rep. (1)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[Crossref]

Sensors (Basel) (1)

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[Crossref] [PubMed]

Small (1)

Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, and X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications,” Small 8(9), 1392–1397 (2012).
[Crossref] [PubMed]

Other (2)

P. N. Prasad, Nanophotonics (Wiley-Interscience, 2004).

A. Knights, A. House, R. MacNaughton, and F. Hopper, “Optical power monitoring function compatible with single chip integration on silicon-on-insulator,” in OSA Trends in Optics and Photonics (TOPS) 86, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, 2003), pp. 705−706.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Bird’s-eye view and (b) cross-sectional SEM image of back side of b-Si sample after Ag-NPs deposition.
Fig. 2
Fig. 2 Absorption spectra for planar Si, planar Si loaded with Ag-NPs, and b-Si loaded with Ag film and Ag-NPs, in wavelength regimes of (a) 400–1100 nm and (b) 1200–2200 nm.
Fig. 3
Fig. 3 Electric field intensity distribution in Al2O3/Ag-NP/Si at (a) x-z and (b) x-y planes under illumination of 1319-nm light and at (c) x-z and (d) x-y planes under illumination of 1550-nm light. (e) Simulated absorption spectrum of Al2O3/Ag-NPs/Si, together with measured absorption spectra of Si and Si with Ag-NPs in Al2O3 and their difference spectrum.
Fig. 4
Fig. 4 Schematic of b-Si/Ag-NPs PD.
Fig. 5
Fig. 5 I-V curves for b-Si/Ag-NPs PD, b-Si/Ag thin film PD, and planar Si/Ag-NPs PD under illumination of (a) 1319- and (b) 1550-nm light.
Fig. 6
Fig. 6 Responsivity of b-Si/Ag-NPs PD at reversely biased voltages of 3, 5, and 10 V in wavelength range of 1250−1650 nm.

Tables (1)

Tables Icon

Table 1 Responsivities of b-Si/Ag-NPs PD for illuminating wavelengths of 1319 and 1550 nm at reversely biased voltages of 3, 5, and 10 V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R= I p P o ,
NEP= 2e I d Δf R ,

Metrics