Abstract

Two-dimensional materials (2DMs) such as graphene and black phosphorus (BP) have aroused considerable attentions in the past few years. Engineering and enhancing their light-matter interaction is possible due to their support for localized surface plasmon resonances in the infrared regime. In this paper, we have proposed an infrared broadband absorber consisting of multilayer graphene-BP nanoparticles sandwiched between dielectric layers. Benefiting from the properties of graphene and BP, the absorber exhibits both perfect broadband responses and strong anisotropy beyond individual graphene and BP layers. The absorber is tunable with the variation of geometric parameters as well as the doping levels of graphene and BP. The physical insight is revealed by electric field distributions. Furthermore, the angular robustness for incident wave is investigated. The proposed anisotropic omnidirectional broadband absorber may have promising potential applications in various biosensing, communication and imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer

Qilin Hong, Feng Xiong, Wei Xu, Zhihong Zhu, Ken Liu, Xiaodong Yuan, Jianfa Zhang, and Shiqiao Qin
Opt. Express 26(17) 22528-22535 (2018)

Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials

Jiao Wang and Yannan Jiang
Opt. Express 25(5) 5206-5216 (2017)

Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure

Yijun Cai and Kai-Da Xu
Opt. Express 26(24) 31693-31705 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
    [Crossref] [PubMed]
  3. F. J. G. D. Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  4. A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
    [Crossref] [PubMed]
  5. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  6. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  7. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  8. W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
    [Crossref] [PubMed]
  9. L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
    [Crossref] [PubMed]
  10. Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
    [Crossref]
  11. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
    [Crossref] [PubMed]
  12. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
    [Crossref] [PubMed]
  13. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  14. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  15. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref] [PubMed]
  16. Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
    [Crossref] [PubMed]
  17. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
    [Crossref]
  18. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
    [Crossref] [PubMed]
  19. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref] [PubMed]
  20. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref] [PubMed]
  21. Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
    [Crossref] [PubMed]
  22. L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
    [Crossref]
  23. C. Fang, Y. Liu, G. Han, Y. Shao, J. Zhang, and Y. Hao, “Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies,” Opt. Express 26(21), 27683–27693 (2018).
    [Crossref] [PubMed]
  24. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref] [PubMed]
  25. J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
    [Crossref] [PubMed]
  26. X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
    [Crossref] [PubMed]
  27. X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
    [Crossref] [PubMed]
  28. Y. M. Qing, H. F. Ma, and T. J. Cui, “Strong coupling between magnetic plasmons and surface plasmons in a black phosphorus-spacer-metallic grating hybrid system,” Opt. Lett. 43(20), 4985–4988 (2018).
    [Crossref] [PubMed]
  29. D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
    [Crossref] [PubMed]
  30. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
    [Crossref] [PubMed]
  31. Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
    [Crossref] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids 3 (Academic, 1998).
  33. T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
    [Crossref]
  34. J. Zhu, J. Cheng, L. Zhang, and Q. H. Liu, “Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation,” Mater. Lett. 186, 53–56 (2017).
    [Crossref]
  35. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  36. Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
    [Crossref] [PubMed]
  37. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref] [PubMed]
  38. Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
    [Crossref]

2018 (10)

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref] [PubMed]

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, J. Zhang, and Y. Hao, “Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies,” Opt. Express 26(21), 27683–27693 (2018).
[Crossref] [PubMed]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Strong coupling between magnetic plasmons and surface plasmons in a black phosphorus-spacer-metallic grating hybrid system,” Opt. Lett. 43(20), 4985–4988 (2018).
[Crossref] [PubMed]

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref] [PubMed]

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

2017 (4)

2016 (2)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (10)

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. J. G. D. Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

2012 (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (1)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2005 (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

1983 (1)

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Abajo, F. J. G. D.

F. J. G. D. Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Bao, Q.

Bauman, S. J.

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

Booth, T. J.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Cai, Y.

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

Cai, Z.

Cao, W. P.

Carvalho, A.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, S.

Chen, X.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref] [PubMed]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Chen, Y.

Cheng, J.

J. Zhu, J. Cheng, L. Zhang, and Q. H. Liu, “Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation,” Mater. Lett. 186, 53–56 (2017).
[Crossref]

Chiarello, G.

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

Churchill, H. O. H.

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

Cui, T. J.

Dai, X.

Debu, D. T.

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

Ding, J.

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Fan, D.

Fang, C.

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

French, D.

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

Gao, C. N.

García de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Guo, C. C.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Guo, J.

Guo, R.

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

Guo, Z.

Guo, Z. N.

Han, G.

Han, L.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Y.

Herzog, J. B.

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

Hong, Q.

Hu, Z.

Ishii, T.

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Iwasa, Y.

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Jiang, G.

Jiang, X. F.

Jiang, Y.

Khotkevich, V. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Lan, G.

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Lin, T.

Liu, C.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Liu, H.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Liu, K.

Liu, M.

Liu, Q. H.

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

J. Zhu, J. Cheng, L. Zhang, and Q. H. Liu, “Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation,” Mater. Lett. 186, 53–56 (2017).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

Liu, W.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Lu, S.

Lu, W.

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref] [PubMed]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

Luo, A. P.

Luo, Z.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Luo, Z. C.

Ma, H. F.

Ma, Q.

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Neal, A. T.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Neto, A. H. C.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

Ni, X.

Nong, J.

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Politano, A.

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

Qin, S.

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref] [PubMed]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Qin, S. Q.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Qing, Y. M.

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rodin, A. S.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Saito, Y.

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

Sato, T.

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Schedin, F.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Shang, Z.

Shao, Y.

Tang, D.

Tang, L.

Tang, W.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

Tománek, D.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Wang, H.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, J.

Wang, L.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref] [PubMed]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

Wang, W.

Wang, X.

Wei, W.

Wen, S.

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Wu, L.

Xia, F.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiang, Y.

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xing, H.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Xiong, F.

Xu, K. D.

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

Xu, W.

Xu, W. C.

Xu, X.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ye, L.

Ye, P. D.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Ye, W. M.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Yi, J.

Yu, A.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

Yu, X.

Yu, X. F.

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Yuan, X.

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref] [PubMed]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Yuan, X. D.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, J. F.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Zhang, L.

J. Zhu, J. Cheng, L. Zhang, and Q. H. Liu, “Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation,” Mater. Lett. 186, 53–56 (2017).
[Crossref]

Zhang, Y.

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Zhao, C.

Zhao, C. J.

Zhou, J.

Zhu, J.

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

J. Zhu, J. Cheng, L. Zhang, and Q. H. Liu, “Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation,” Mater. Lett. 186, 53–56 (2017).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref] [PubMed]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Zhu, Z.

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref] [PubMed]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Zhu, Z. H.

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

ACS Nano (3)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

F. J. G. D. Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

IEEE Photonics J. (1)

Y. Cai, K. D. Xu, R. Guo, J. Zhu, and Q. H. Liu, “Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region,” IEEE Photonics J. 10(6), 1 (2018).
[Crossref]

J. Appl. Phys. (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, J. F. Zhang, W. M. Ye, X. D. Yuan, and S. Q. Qin, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

J. Cryst. Growth (1)

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Mater. Lett. (1)

J. Zhu, J. Cheng, L. Zhang, and Q. H. Liu, “Modeling of 2D graphene material for plasmonic hybrid waveguide with enhanced near-infrared modulation,” Mater. Lett. 186, 53–56 (2017).
[Crossref]

Nano Lett. (2)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nanoscale (3)

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref] [PubMed]

A. Politano and G. Chiarello, “Plasmon modes in graphene: status and prospect,” Nanoscale 6(19), 10927–10940 (2014).
[Crossref] [PubMed]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7(32), 13530–13536 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Opt. Express (10)

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

C. Fang, Y. Liu, G. Han, Y. Shao, J. Zhang, and Y. Hao, “Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies,” Opt. Express 26(21), 27683–27693 (2018).
[Crossref] [PubMed]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref] [PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

Q. Hong, F. Xiong, W. Xu, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, “Tunable optical properties of multilayers black phosphorus thin films,” Phys. Rev. B Condens. Matter Mater. Phys. 90(7), 075434 (2014).
[Crossref]

Phys. Rev. Lett. (1)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2014).
[Crossref] [PubMed]

D. T. Debu, S. J. Bauman, D. French, H. O. H. Churchill, and J. B. Herzog, “Tuning infrared plasmon resonance of black phosphorene nanoribbon with a dielectric interface,” Sci. Rep. 8(1), 3224 (2018).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids 3 (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed three-layer graphene-BP-sandwiched absorber (GBPSA) in (a) perspective view and (b) cross-section view. t1 is the thickness of hBN layer between graphene and BP. t2 and d are the thickness of the upper three Al2O3 layers and bottom Al2O3 layer, respectively. w1, w2 and w3 are the widths of graphene-BP nanoparticles in different layers (Three layers can be ranked in arbitrary order). p is the periodicity of the periodic GBPSA structure.
Fig. 2
Fig. 2 Absorption rate of (a) single-layer and (b) three-layer GBPSA. (c) Optical losses inside different materials of GBPSA under TE incidence. The parameters are w1 = 135 nm, w2 = 115 nm, w3 = 125 nm, p = 250 nm, t1 = 5 nm, t2 = 100 nm and d = 1.65 μm, under normal incidence. The width of single layer graphene-BP is 115 nm.
Fig. 3
Fig. 3 Electric field distributions of three-layer GBPSA, (a)-(c) are the cross-section views and (d)-(f) are the top views, where w1 = 135 nm, w2 = 115 nm, w3 = 125 nm, p = 250 nm, t1 = 5 nm, t2 = 100 nm and d = 1.65 μm.
Fig. 4
Fig. 4 Absorption spectra as a function of geometric parameters: (a) and (b) for dielectric thickness d, (c) and (d) for insulator thickness t1, (e) and (f) for periodic spacing p, under TE and TM incidences, respectively. Other parameters are as in Fig. 2(b).
Fig. 5
Fig. 5 Absorption spectra as a function of doping level: (a) and (b) for different μc of graphene, (c) and (d) for different ns of BP, under TE and TM incidences, respectively, where w1 = 135 nm, w2 = 115 nm, w3 = 125 nm, p = 250 nm, t1 = 5 nm, t2 = 100 nm and d = 1.65 μm.
Fig. 6
Fig. 6 (a) and (b) are absorption spectra as a function of incident angles θ for TE polarization and TM polarization respectively. (c) is absorption spectra for various polarization angles β under normal incidence. The parameters are w1 = 135 nm, w2 = 115 nm, w3 = 125 nm, p = 250 nm, t1 = 5 nm, t2 = 100 nm and d = 1.65 μm.

Tables (1)

Tables Icon

Table 1 Comparisons between plasmonic absorbers at infrared frequencies.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ(ω, μ c ,Г,T)= σ intra + σ inter
σ intra = j e 2 π 2 (ωj2Г) 0 ξ( f d (ξ, μ c ,T) ξ f d (ξ, μ c ,T) ξ ) dξ
σ inter = j e 2 (ωj2Г) π 2 0 f d (ξ, μ c ,T) f d (ξ, μ c ,T) (ωj2Г) 2 4 (ξ/) 2 dξ
f d ( ξ, μ c ,T )= ( e (ξ μ c )/ k B T +1) 1
σ jj = i D j π(ω+ iη )
D j = π e 2 n s m j
m cx = 2 2 γ 2 Δ + η c
m cy = 2 2 ν c
A(λ)=2π c λ ε '' V | E l | 2 dV

Metrics