Abstract

Emissivity-tunable metamaterials of layered refractory metal and dielectric have great potentials as a simple thermophotovoltaic (TPV) selective emitter due to its near-omnidirectional, polarization-independent, and broadband selective emissivity. However, it is known that the stability of the layered structure is limited by the oxidation of metals. While there still exists ambiguity concerning the main source of oxygen between adjacent oxide layers and external residual oxygen, most reports focus on the adjacent layers. In this report, thermal stability of a tungsten-based layered metamaterial is investigated under a high-vacuum environment with great care to reduce residual oxygen. The results show unprecedented thermal stability up to 1200 °C for 3 h without any measurable oxidation of metal. This implies that the interlayer diffusion of oxygen from adjacent oxide layers is not exclusively responsible for the oxidation of metal. At such a high temperature, the layered metamaterial theoretically yields a high convertible radiative power density of 3.04 W/cm2 with comparable spectral efficiency of 40.2%. Finally, after performing series of thermal tests under higher thermal loads, we propose a novel high-temperature degradation model for layered metamaterials, the stability of which is ultimately limited by the agglomeration of thin metal layers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich
Opt. Express 23(19) A1236-A1244 (2015)

Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

Manohar Chirumamilla, Alexander S. Roberts, Fei Ding, Deyong Wang, Peter Kjær Kristensen, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Mater. Express 6(8) 2704-2714 (2016)

High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals

Veronika Rinnerbauer, Yi Xiang Yeng, Walker R. Chan, Jay J. Senkevich, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(9) 11482-11491 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [Crossref] [PubMed]
  2. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  3. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [Crossref]
  4. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
    [Crossref]
  5. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
    [Crossref]
  6. K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
    [Crossref]
  7. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref] [PubMed]
  8. V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
    [Crossref]
  9. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
    [Crossref] [PubMed]
  10. C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
    [Crossref]
  11. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  12. D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. Shaner, and J. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
    [Crossref]
  13. C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
    [Crossref] [PubMed]
  14. A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
    [Crossref]
  15. J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
    [Crossref]
  16. Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
    [Crossref]
  17. A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
    [Crossref] [PubMed]
  18. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref] [PubMed]
  19. M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5(1), 53099 (2015).
    [Crossref]
  20. A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
    [Crossref]
  21. S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
    [Crossref]
  22. E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
    [Crossref] [PubMed]
  23. A. Narayanaswamy, J. Cybulski, and G. Chen, “1D Metallo-Dielectric Photonic Crystals as Selective Emitters for Thermophotovoltaic Applications,” in the AIP Conference Proceedings 738, 215–220 (2004).
  24. L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
    [Crossref]
  25. M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
    [Crossref]
  26. V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
    [Crossref]
  27. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  28. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  29. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704 (2016).
    [Crossref]
  30. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
    [Crossref] [PubMed]
  31. J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
    [Crossref]
  32. M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
    [Crossref]
  33. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  34. D. V. Kostomarov, K. S. Bagdasarov, and E. V. Antonov, “Chemical reactions in the W-Al2O3 system near the melting point of aluminum oxide under low vacuum,” Russ. J. Inorg. Chem. 57(10), 1405–1409 (2012).
    [Crossref]
  35. C. J. Engberg and E. H. Zehms, “Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000 °C,” J. Am. Ceram. Soc. 42(6), 300–305 (1959).
    [Crossref]
  36. A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
    [Crossref]
  37. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  38. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
    [Crossref] [PubMed]
  39. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  40. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
    [Crossref] [PubMed]
  41. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
    [Crossref] [PubMed]
  42. E. L. Courtright, J. T. Prater, C. H. Henager, and E. N. Greenwell, “Oxygen Permeability for Selected Ceramic Oxides in the Range 1200 °C –1700 °C,” Tech. Rep. WL-TR-91–4, (1991).
  43. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  44. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
    [Crossref] [PubMed]
  45. S. Burgess, X. Li, and J. Holland, “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” Microsc. Microanal. 27(4), S8–S13 (2013).
  46. P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
    [Crossref] [PubMed]
  47. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
    [Crossref]
  48. V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
    [Crossref]
  49. V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
    [Crossref]
  50. T. B. Reed, Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations.1971.
  51. W. W. Mullins, “Theory of Thermal Grooving,” J. Appl. Phys. 28(3), 333–339 (1957).
    [Crossref]
  52. H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
    [Crossref]
  53. F. J. Bradshaw, R. H. Brandon, and C. Wheeler, “Surface self-diffusion of coper as affected by enviroment,” Acta Metall. 12(9), 1057–1063 (1964).
    [Crossref]
  54. B. Brandon and F. J. Bradshaw, “The mobility of the surface atoms of copper and silver evaporated deposits,” R. Aircr. Establ. Tech. Rep. no. 66093 (1966).
  55. H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
    [Crossref]
  56. I. Beszeda, E. G. Gontier-Moya, and D. L. Beke, “Investigation of mass transfer surface self-diffusion on palladium,” Surf. Sci. 547(1–2), 229–238 (2003).
    [Crossref]
  57. Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
    [Crossref]
  58. T. Vasilos and J. T. Smith, “Diffusion mechanism for tungsten sintering kinetics,” J. Appl. Phys. 35(1), 215–217 (1964).
    [Crossref]
  59. E. N. Hodkin, M. G. Nicholas, and D. M. Poole, “The surface energies of solid molybdenum, niobium, tantalum and tungsten,” J. Less Common Met. 20(2), 93–103 (1970).
    [Crossref]
  60. S. K. Rhee, “Critical Surface Energies of Al2O3 and Graphite,” J. Am. Ceram. Soc. 55(6), 300–303 (1972).
    [Crossref]

2018 (5)

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. Shaner, and J. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref] [PubMed]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
[Crossref]

2017 (1)

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

2016 (7)

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704 (2016).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref] [PubMed]

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

2015 (2)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5(1), 53099 (2015).
[Crossref]

2014 (8)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

2013 (10)

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

S. Burgess, X. Li, and J. Holland, “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” Microsc. Microanal. 27(4), S8–S13 (2013).

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

2012 (4)

D. V. Kostomarov, K. S. Bagdasarov, and E. V. Antonov, “Chemical reactions in the W-Al2O3 system near the melting point of aluminum oxide under low vacuum,” Russ. J. Inorg. Chem. 57(10), 1405–1409 (2012).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

2011 (1)

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

2010 (1)

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

2009 (1)

2008 (1)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

2006 (1)

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

2004 (1)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

2003 (3)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

I. Beszeda, E. G. Gontier-Moya, and D. L. Beke, “Investigation of mass transfer surface self-diffusion on palladium,” Surf. Sci. 547(1–2), 229–238 (2003).
[Crossref]

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

1990 (1)

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

1972 (1)

S. K. Rhee, “Critical Surface Energies of Al2O3 and Graphite,” J. Am. Ceram. Soc. 55(6), 300–303 (1972).
[Crossref]

1970 (1)

E. N. Hodkin, M. G. Nicholas, and D. M. Poole, “The surface energies of solid molybdenum, niobium, tantalum and tungsten,” J. Less Common Met. 20(2), 93–103 (1970).
[Crossref]

1964 (2)

T. Vasilos and J. T. Smith, “Diffusion mechanism for tungsten sintering kinetics,” J. Appl. Phys. 35(1), 215–217 (1964).
[Crossref]

F. J. Bradshaw, R. H. Brandon, and C. Wheeler, “Surface self-diffusion of coper as affected by enviroment,” Acta Metall. 12(9), 1057–1063 (1964).
[Crossref]

1959 (1)

C. J. Engberg and E. H. Zehms, “Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000 °C,” J. Am. Ceram. Soc. 42(6), 300–305 (1959).
[Crossref]

1957 (1)

W. W. Mullins, “Theory of Thermal Grooving,” J. Appl. Phys. 28(3), 333–339 (1957).
[Crossref]

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Agrawal, M.

Aimone, P. R.

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Aleksandrova, A.

Anikeev, S.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Antonov, E. V.

D. V. Kostomarov, K. S. Bagdasarov, and E. V. Antonov, “Chemical reactions in the W-Al2O3 system near the melting point of aluminum oxide under low vacuum,” Russ. J. Inorg. Chem. 57(10), 1405–1409 (2012).
[Crossref]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Avery, J. E.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Azad, A. K.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Baeumler, M.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Bagdasarov, K. S.

D. V. Kostomarov, K. S. Bagdasarov, and E. V. Antonov, “Chemical reactions in the W-Al2O3 system near the melting point of aluminum oxide under low vacuum,” Russ. J. Inorg. Chem. 57(10), 1405–1409 (2012).
[Crossref]

Bai, Y.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Baldasaro, P. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Bathurst, S.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Beausang, J. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Beke, D. L.

I. Beszeda, E. G. Gontier-Moya, and D. L. Beke, “Investigation of mass transfer surface self-diffusion on palladium,” Surf. Sci. 547(1–2), 229–238 (2003).
[Crossref]

Belenky, G. L.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Benkhelifa, F.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Bernhardt, F.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Beszeda, I.

I. Beszeda, E. G. Gontier-Moya, and D. L. Beke, “Investigation of mass transfer surface self-diffusion on palladium,” Surf. Sci. 547(1–2), 229–238 (2003).
[Crossref]

Bethke, D.

Bieberle-Hütter, A.

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Bingham, C.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Blandre, E.

Boltasseva, A.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Bradshaw, F. J.

F. J. Bradshaw, R. H. Brandon, and C. Wheeler, “Surface self-diffusion of coper as affected by enviroment,” Acta Metall. 12(9), 1057–1063 (1964).
[Crossref]

Brandon, R. H.

F. J. Bradshaw, R. H. Brandon, and C. Wheeler, “Surface self-diffusion of coper as affected by enviroment,” Acta Metall. 12(9), 1057–1063 (1964).
[Crossref]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Brown, E. J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Burckel, D. B.

Burger, S. R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Burgess, S.

S. Burgess, X. Li, and J. Holland, “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” Microsc. Microanal. 27(4), S8–S13 (2013).

Canetta, C.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Cederberg, J. G.

Celanovic, I.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Cezairliyan, A.

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

Chae, H.-M.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Chan, W. R.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Chang, C. C.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Chapuis, P.-O.

Chashnikova, M.

Chen, B. R.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

Chen, H. T.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Chen, N.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Chirumamilla, M.

Chou, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Chou, J. B.

Christian, B.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Cimalla, V.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Connors, M. K.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Coppens, Z. J.

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

Dalvit, D. A. R.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Danielson, L. R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Dashiell, M. W.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Davenport, T. M.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Demeo, D.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Depoy, D. M.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Dewalt, C. J.

Ding, F.

Dinh, V. T.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Donetski, D.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Ehsani, H.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Eichapfel, G.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Elser, P.

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Emery, K. A.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Engberg, C. J.

C. J. Engberg and E. H. Zehms, “Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000 °C,” J. Am. Ceram. Soc. 42(6), 300–305 (1959).
[Crossref]

Fan, S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Fedosenko, O.

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Flores, Y.

Fourspring, P. M.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Fraas, L. M.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Fu, S. M.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

Galinski, H.

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Gauckler, L. J.

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Gee, J. M.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

Ghanekar, A.

Ghebrebrhan, M.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Gontier-Moya, E. G.

I. Beszeda, E. G. Gontier-Moya, and D. L. Beke, “Investigation of mass transfer surface self-diffusion on palladium,” Surf. Sci. 547(1–2), 229–238 (2003).
[Crossref]

Grine, A. D.

Gruska, B.

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guo, Y.

Hensley, J.

Himmerlich, M.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Hodkin, E. N.

E. N. Hodkin, M. G. Nicholas, and D. M. Poole, “The surface energies of solid molybdenum, niobium, tantalum and tungsten,” J. Less Common Met. 20(2), 93–103 (1970).
[Crossref]

Holland, J.

S. Burgess, X. Li, and J. Holland, “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” Microsc. Microanal. 27(4), S8–S13 (2013).

Huang, R. K.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Hwang, B.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ives, T.

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

Jensen, K. F.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

Jia, Q.

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

Joannopoulos, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Ju, B.-K.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Jung, S. M.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Kadlec, E. A.

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kim, D. S.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Kim, J. H.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Kim, J. M.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Kim, S.-G.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Kim, S.-K.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Kim, Y.-S.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kirste, L.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Kischkat, J.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Klinkmüller, M.

Kohiyama, A.

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref] [PubMed]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5(1), 53099 (2015).
[Crossref]

Kort-Kamp, W. J. M.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Kostomarov, D. V.

D. V. Kostomarov, K. S. Bagdasarov, and E. V. Antonov, “Chemical reactions in the W-Al2O3 system near the melting point of aluminum oxide under low vacuum,” Russ. J. Inorg. Chem. 57(10), 1405–1409 (2012).
[Crossref]

Kravchenko, I. I.

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Krischok, S.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Kristensen, P. K.

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Latham, N. P.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Lee, H.-J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Lee, S.

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Li, X.

S. Burgess, X. Li, and J. Holland, “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” Microsc. Microanal. 27(4), S8–S13 (2013).

Lin, A.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

Lin, L.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Lu, P.

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

Luk, T. S.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

D. N. Woolf, E. A. Kadlec, D. Bethke, A. D. Grine, J. J. Nogan, J. G. Cederberg, D. B. Burckel, T. S. Luk, E. Shaner, and J. Hensley, “High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter,” Optica 5(2), 213–218 (2018).
[Crossref]

Luryi, S.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Machulik, S.

MacManus-Driscoll, J. L.

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Martinelli, R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Masselink, W. T.

Mayo, J.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Miiller, A. P.

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

Monastyrskyi, G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Mullins, W. W.

W. W. Mullins, “Theory of Thermal Grooving,” J. Appl. Phys. 28(3), 333–339 (1957).
[Crossref]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Nicholas, M. G.

E. N. Hodkin, M. G. Nicholas, and D. M. Poole, “The surface energies of solid molybdenum, niobium, tantalum and tungsten,” J. Less Common Met. 20(2), 93–103 (1970).
[Crossref]

Nichols, G. J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Nogan, J.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Nogan, J. J.

Padilla, W.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Park, K. H.

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Passow, T.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Pedersen, K.

Peters, S.

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Peumans, P.

Pezoldt, J.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Pincon, O.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poole, D. M.

E. N. Hodkin, M. G. Nicholas, and D. M. Poole, “The surface energies of solid molybdenum, niobium, tantalum and tungsten,” J. Less Common Met. 20(2), 93–103 (1970).
[Crossref]

Prescher, M.

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Rahner, K. D.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Reed, T. B.

T. B. Reed, Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations.1971.

Rhee, S. K.

S. K. Rhee, “Critical Surface Energies of Al2O3 and Graphite,” J. Am. Ceram. Soc. 55(6), 300–303 (1972).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Roberts, A. S.

Romero, E.

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

Rupp, J. L. M.

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Ryll, T.

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Saka, N.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Semtsiv, M.

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

Shalaev, V. M.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Shaner, E.

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Shellenbarger, Z. A.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Shemelya, C.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Shimizu, M.

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref] [PubMed]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5(1), 53099 (2015).
[Crossref]

Shin, M. W.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Shrader, R.

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

Smith, J. T.

T. Vasilos and J. T. Smith, “Diffusion mechanism for tungsten sintering kinetics,” J. Appl. Phys. 35(1), 215–217 (1964).
[Crossref]

Smyth, K.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Soljacic, M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Stelmakh, V.

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Sundaram, V. S.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Sykora, M.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Talamo, P.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Tan, Z.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Taylor, A. J.

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Taylor, G.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Topper, W. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Tu, M. H.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

Tucker, C.

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

Turner, G. W.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Vaillon, R.

Valentine, J. G.

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

Vandervelde, T. E.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Vasilos, T.

T. Vasilos and J. T. Smith, “Diffusion mechanism for tungsten sintering kinetics,” J. Appl. Phys. 35(1), 215–217 (1964).
[Crossref]

Wang, C. A.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Wang, D.

Wang, E. N.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Wang, F.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Wang, J.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Wheeler, C.

F. J. Bradshaw, R. H. Brandon, and C. Wheeler, “Surface self-diffusion of coper as affected by enviroment,” Acta Metall. 12(9), 1057–1063 (1964).
[Crossref]

Woolf, D. N.

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wu, X.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

Xiang Yeng, Y.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

Yan, L.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Yerkes, J. W.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

Yin, Z.

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Yu, Z.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Yugami, H.

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref] [PubMed]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5(1), 53099 (2015).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Zehms, E. H.

C. J. Engberg and E. H. Zehms, “Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000 °C,” J. Am. Ceram. Soc. 42(6), 300–305 (1959).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Zheng, Y.

Zhong, Y. K.

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

Zhu, L.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Acta Metall. (1)

F. J. Bradshaw, R. H. Brandon, and C. Wheeler, “Surface self-diffusion of coper as affected by enviroment,” Acta Metall. 12(9), 1057–1063 (1964).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Adv. Mater. (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Appl. Phys. Lett. (8)

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399–3401 (2004).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104(20), 201113 (2014).
[Crossref]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102(24), 241904 (2013).
[Crossref]

Appl. Surf. Sci. (1)

J. M. Kim, K. H. Park, D. S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, “Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography,” Appl. Surf. Sci. 429, 138–143 (2018).
[Crossref]

Chem. Mater. (1)

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Energy Environ. Sci. (1)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

IEEE Photonics J. (1)

S. M. Fu, Y. K. Zhong, M. H. Tu, B. R. Chen, and A. Lin, “A Planarized Thermophotovoltaic Emitter with Idealized Selective Emission,” IEEE Photonics J. 8(4), 1300109 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasaro, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53(12), 2879–2891 (2006).
[Crossref]

Int. J. Thermophys. (1)

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

J. Am. Ceram. Soc. (2)

C. J. Engberg and E. H. Zehms, “Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000 °C,” J. Am. Ceram. Soc. 42(6), 300–305 (1959).
[Crossref]

S. K. Rhee, “Critical Surface Energies of Al2O3 and Graphite,” J. Am. Ceram. Soc. 55(6), 300–303 (1972).
[Crossref]

J. Appl. Phys. (2)

T. Vasilos and J. T. Smith, “Diffusion mechanism for tungsten sintering kinetics,” J. Appl. Phys. 35(1), 215–217 (1964).
[Crossref]

W. W. Mullins, “Theory of Thermal Grooving,” J. Appl. Phys. 28(3), 333–339 (1957).
[Crossref]

J. Less Common Met. (1)

E. N. Hodkin, M. G. Nicholas, and D. M. Poole, “The surface energies of solid molybdenum, niobium, tantalum and tungsten,” J. Less Common Met. 20(2), 93–103 (1970).
[Crossref]

J. Photon. Energy (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5(1), 53099 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
[Crossref]

J. Vac. Sci. Technol. A (1)

V. Stelmakh, V. Rinnerbauer, J. D. Joannopoulos, M. Soljacic, I. Celanovic, J. J. Senkevich, C. Tucker, T. Ives, and R. Shrader, “Evolution of sputtered tungsten coatings at high temperature,” J. Vac. Sci. Technol. A 31(6), 61505 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 11802 (2013).
[Crossref]

Mater. Des. (1)

Y. Bai, L. Yan, J. Wang, Z. Yin, N. Chen, F. Wang, and Z. Tan, “Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology,” Mater. Des. 103, 315–320 (2016).
[Crossref]

Mater. Sci. Appl. (1)

V. Cimalla, M. Baeumler, L. Kirste, M. Prescher, B. Christian, T. Passow, F. Benkhelifa, F. Bernhardt, G. Eichapfel, M. Himmerlich, S. Krischok, and J. Pezoldt, “Densification of Thin Aluminum Oxide Films by Thermal Treatments,” Mater. Sci. Appl. 5(08), 628–638 (2014).
[Crossref]

Microsc. Microanal. (2)

S. Burgess, X. Li, and J. Holland, “High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium,” Microsc. Microanal. 27(4), S8–S13 (2013).

P. Lu, E. Romero, S. Lee, J. L. MacManus-Driscoll, and Q. Jia, “Chemical quantification of atomic-scale EDS maps under thin specimen conditions,” Microsc. Microanal. 20(6), 1782–1790 (2014).
[Crossref] [PubMed]

Nano Converg. (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

C. C. Chang, W. J. M. Kort-Kamp, J. Nogan, T. S. Luk, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, M. Sykora, and H. T. Chen, “High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting,” Nano Lett. 18(12), 7665–7673 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Nature (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Opt. Express (7)

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref] [PubMed]

Opt. Mater. (1)

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

H. Galinski, T. Ryll, P. Elser, J. L. M. Rupp, A. Bieberle-Hütter, and L. J. Gauckler, “Agglomeration of Pt thin films on dielectric substrates,” Phys. Rev. B Condens. Matter Mater. Phys. 82(23), 235415 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Russ. J. Inorg. Chem. (1)

D. V. Kostomarov, K. S. Bagdasarov, and E. V. Antonov, “Chemical reactions in the W-Al2O3 system near the melting point of aluminum oxide under low vacuum,” Russ. J. Inorg. Chem. 57(10), 1405–1409 (2012).
[Crossref]

Surf. Sci. (1)

I. Beszeda, E. G. Gontier-Moya, and D. L. Beke, “Investigation of mass transfer surface self-diffusion on palladium,” Surf. Sci. 547(1–2), 229–238 (2003).
[Crossref]

Other (6)

B. Brandon and F. J. Bradshaw, “The mobility of the surface atoms of copper and silver evaporated deposits,” R. Aircr. Establ. Tech. Rep. no. 66093 (1966).

T. B. Reed, Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations.1971.

E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

A. Narayanaswamy, J. Cybulski, and G. Chen, “1D Metallo-Dielectric Photonic Crystals as Selective Emitters for Thermophotovoltaic Applications,” in the AIP Conference Proceedings 738, 215–220 (2004).

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport, J. W. Yerkes, J. M. Gee, and K. A. Emery, “Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications,” in Proceedings of the IEEE Photovoltaic Specialist Conference (IEEE 1990), pp. 190–195 (1990).
[Crossref]

E. L. Courtright, J. T. Prater, C. H. Henager, and E. N. Greenwell, “Oxygen Permeability for Selected Ceramic Oxides in the Range 1200 °C –1700 °C,” Tech. Rep. WL-TR-91–4, (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 High vacuum heating system used in heating cycle tests.
Fig. 2
Fig. 2 (a) Illustration of the designed metamaterial selective emitter that consists of the 100 nm opaque tungsten at the bottom, 486 nm epsilon-near-zero metamaterial based on tungsten and aluminum oxide, and topmost 140 nm aluminum oxide capping layer. (b) Relative permittivity data of constituents from Palik’s handbook [33]. (c) Relative permittivity of the metamaterial obtained by effective medium approximation. (d) Calculated spectral emissivity as a function of observation angle. Here, the emissivity for p-polarized and s-polarized EM waves are averaged.
Fig. 3
Fig. 3 Representative cross section and EDS line profile of the elemental distribution for the metamaterial samples (a) before and (b) after exposed to 1200 °C for 3 h. Here, the atomic content is acquired only for aluminum, tungsten, and oxygen for clarity,and the sum of these three elements is 100%. (c) Measured spectral emissivity of the samples with ideal TMM calculation.
Fig. 4
Fig. 4 (a) Representative cross section of the metamaterial samples after exposed to 1200 °C for 30 h and (b) 1300 °C for 3 h. (c) Measured spectral emissivity of the samples with ideal TMM calculation. (d) XRD patterns of the samples before and after exposed to the high temperatures.
Fig. 5
Fig. 5 Three-step illustration of the agglomeration process of thin metal layer in the layered metamaterial.
Fig. 6
Fig. 6 Schematics of 3D FDTD models of the degraded metamaterial: (a) Formation of holes in tungsten layers, (b) Agglomerated tungsten particles in aluminum oxide, and (c) Simulated spectral emissivity of the degraded metamaterials.

Tables (1)

Tables Icon

Table 1 Numeric values used in Eq. (7) to calculate the radius of the holes

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε r, = ε r,m t m + ε r,d t d t m + t d , ε r, = ε r,m ε r,d ( t m + t d ) ε r,d t m + ε r,m t d ,
E λ,N =1 R λ,N =1| (n1) 2 + k 2 (n+1) 2 + k 2 |,
P c (λ,T)= 0 λ c λ λ c E λ,H (λ) 2πh c 2 λ 5 [ ( exp hc λ k B T )1 ] dλ
η λ = P c (λ,T) 0 E λ,H (λ) 2πh c 2 λ 5 [ ( exp hc λ k B T )1 ] dλ ,
2/3 W+2/3 Al 2 O 3 4/3 Al+2/3 WO 3 ,ΔG°=425kJ/moleat1200°C,
dy dt = Dγ Ω 2 ν k B T 2 K s 2 ,
r 5/2 = 10 π 1/2 D i γ i Ω 2 ν k B T 1 t m 3/2 τ,

Metrics