Abstract

We present a novel optical amplitude regenerator based on blue-chirp spectral slicing using a semiconductor optical amplifier (SOA). The combination of blue-chirp spectral slicing and gain competition in the SOA has a unique input/output (I/O) power-transfer function, which is controlled by the power of an input data signal injected into the SOA. The I/O power-transfer function provides selective amplitude-level regeneration of either the mark or space level of the input data signal. In this paper, we experimentally investigate the transfer function and the regeneration effect using a quantum-dot semiconductor optical amplifier. The results show that the regenerator has unique regeneration effect, specialized for either the mark or space level of a 10-Gbit/s on-off keying signal.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical DQPSK signal regeneration using 2R amplitude regenerators

Masayuki Matsumoto
Opt. Express 18(1) 10-24 (2010)

Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber

Masayuki Matsumoto and Yasutaka Morioka
Opt. Express 17(8) 6913-6919 (2009)

DPSK signal regeneration using a fiber-based amplitude regenerator

Masayuki Matsumoto and Hironobu Sakaguchi
Opt. Express 16(15) 11169-11175 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightwave Technol. 34(1), 157–179 (2016).
    [Crossref]
  2. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
    [Crossref]
  3. J. D. LeGrange, M. Dinu, T. Sochor, P. Bollond, A. Kasper, S. Cabot, G. S. Johnson, I. Kang, A. Grant, J. Kay, and J. Jaques, “Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit,” Opt. Express 22(11), 13600–13615 (2014).
    [Crossref] [PubMed]
  4. B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2000).
  5. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  6. T. Nagashima, M. Hasegawa, and T. Konishi, “40-GSamples/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
    [Crossref]
  7. H. Hoshino, T. Okada, and M. Matsuura, “Photonic analog-to-digital conversion using a red frequency chirp in a semiconductor optical amplifier,” Opt. Lett. 43(10), 2272–2275 (2018).
    [Crossref] [PubMed]
  8. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
    [Crossref]
  9. D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
    [Crossref]
  10. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference and Exhibition on Optical Communication (1998).
  11. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
    [Crossref]
  12. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).
  13. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
    [Crossref] [PubMed]
  14. Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).
  15. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).
  16. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [Crossref]
  17. T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).
  18. K. Lenglé, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, T.-N. Nguyen, C. Pareige, R. Madec, J.-C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10 Gb/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in European Conference and Exhibition on Optical Communication (2012).
  19. D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
    [Crossref] [PubMed]
  20. M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
    [Crossref]
  21. O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
    [Crossref]
  22. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B551–B559 (2011).
    [Crossref] [PubMed]
  23. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Error-free 320-to-40-Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier,” Opt. Lett. 38(2), 238–240 (2013).
    [Crossref] [PubMed]
  24. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011).
    [Crossref] [PubMed]
  25. M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, and H. J. S. Dorren, “320-to-40-Gbit/s optical demultiplexing using four-wave mixing in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 24(2), 101–103 (2012).
    [Crossref]
  26. M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
    [Crossref]
  27. M. Matsuura, H. Ohta, and R. Seki, “Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 40(6), 914–917 (2015).
    [Crossref] [PubMed]
  28. M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
    [Crossref]

2018 (2)

2017 (1)

T. Nagashima, M. Hasegawa, and T. Konishi, “40-GSamples/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

2013 (1)

2012 (2)

M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, and H. J. S. Dorren, “320-to-40-Gbit/s optical demultiplexing using four-wave mixing in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 24(2), 101–103 (2012).
[Crossref]

D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
[Crossref]

2011 (2)

2010 (2)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

2009 (1)

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

2008 (3)

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

2007 (1)

2006 (1)

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

2004 (1)

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

2003 (3)

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

1999 (2)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
[Crossref]

Anantathanasarn, S.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Balmefrezol, E.

Bekele, D. A.

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Bollond, P.

Brindel, P.

Cabot, S.

Calabretta, N.

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Error-free 320-to-40-Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier,” Opt. Lett. 38(2), 238–240 (2013).
[Crossref] [PubMed]

M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, and H. J. S. Dorren, “320-to-40-Gbit/s optical demultiplexing using four-wave mixing in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 24(2), 101–103 (2012).
[Crossref]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B551–B559 (2011).
[Crossref] [PubMed]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011).
[Crossref] [PubMed]

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

Contestabile, G.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Dagens, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

de Waardt, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Dinu, M.

Dorren, H. J. S.

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Error-free 320-to-40-Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier,” Opt. Lett. 38(2), 238–240 (2013).
[Crossref] [PubMed]

M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, and H. J. S. Dorren, “320-to-40-Gbit/s optical demultiplexing using four-wave mixing in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 24(2), 101–103 (2012).
[Crossref]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B551–B559 (2011).
[Crossref] [PubMed]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011).
[Crossref] [PubMed]

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Fitsios, D.

D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
[Crossref]

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Froberg, N. M.

M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
[Crossref]

Funabashi, M.

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Galili, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Gomez-Agis, F.

González-Marcos, A. P.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Grant, A.

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Guan, P.

Hasama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Hasegawa, M.

T. Nagashima, M. Hasegawa, and T. Konishi, “40-GSamples/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

Henion, S. R.

M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
[Crossref]

Herrera, J.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Hill, M. T.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

Hoshino, H.

Hu, H.

Ishikawa, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Iwatsu, N.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
[Crossref]

Jacobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Jaques, J.

Johnson, G. S.

Ju, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Kang, I.

Kasper, A.

Kassar, G.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Kawashima, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Kay, J.

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Khoe, G.-D.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

Khoe, G.-J.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Kikuchi, K.

Kishi, N.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
[Crossref]

Kitamura, K.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
[Crossref]

Kitayama, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

Konishi, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40-GSamples/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
[Crossref]

Lavigne, B.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
[Crossref]

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

Leclerc, O.

LeGrange, J. D.

Lenstra, D.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

Li, Z.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Liu, Y.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Maruta, A.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

Matsuura, M.

H. Hoshino, T. Okada, and M. Matsuura, “Photonic analog-to-digital conversion using a red frequency chirp in a semiconductor optical amplifier,” Opt. Lett. 43(10), 2272–2275 (2018).
[Crossref] [PubMed]

M. Matsuura, H. Ohta, and R. Seki, “Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 40(6), 914–917 (2015).
[Crossref] [PubMed]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Error-free 320-to-40-Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier,” Opt. Lett. 38(2), 238–240 (2013).
[Crossref] [PubMed]

M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, and H. J. S. Dorren, “320-to-40-Gbit/s optical demultiplexing using four-wave mixing in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 24(2), 101–103 (2012).
[Crossref]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011).
[Crossref] [PubMed]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B551–B559 (2011).
[Crossref] [PubMed]

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
[Crossref]

Miliou, A.

D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
[Crossref]

Mishra, A. K.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Monroy, I. T.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Morito, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

Mork, J.

Mørk, J.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Nagashima, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40-GSamples/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Nielsen, M. L.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

Nötzel, R.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Öhman, F.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Ohta, H.

Okada, T.

Ottaviano, L.

Oxenløwe, L. K.

Pan, Z.

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

Paraschis, L.

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Pierre, L.

Pleros, N.

D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
[Crossref]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Raushenbach, K. A.

M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
[Crossref]

Raz, O.

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Rouvillain, D.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Seguineau, F.

Seki, R.

Sekiguchi, S.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

Simoyama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Sochor, T.

Sugawara, M.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Tafur Monroy, I.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Tangdiongga, E.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Valley, G. C.

Vivero, T.

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Vyrsokinos, K.

D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
[Crossref]

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

Yang, X.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

Yoo, S. J. B.

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

Yu, Y.

Yvind, K.

D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
[Crossref] [PubMed]

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Zhu, Z.

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

Electron. Lett. (2)

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-J. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1079–1092 (2004).
[Crossref]

D. Fitsios, K. Vyrsokinos, A. Miliou, and N. Pleros, “Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates,” IEEE J. Sel. Top. Quantum Electron. 18(2), 1006–1015 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (6)

T. Nagashima, M. Hasegawa, and T. Konishi, “40-GSamples/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, and S. J. B. Yoo, “10000-hop cascaded in-line all-optical 3R regeneration to achieve 1250000-km 10-Gb/s transmission,” IEEE Photonics Technol. Lett. 18(5), 718–720 (2006).

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 22(7), 492–494 (2010).

M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, and H. J. S. Dorren, “320-to-40-Gbit/s optical demultiplexing using four-wave mixing in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 24(2), 101–103 (2012).
[Crossref]

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of SOAs measured with an optical bandpass filter,” IEEE Photonics Technol. Lett. 20(23), 2001–2003 (2008).
[Crossref]

M. Kuznetsov, N. M. Froberg, S. R. Henion, and K. A. Raushenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photonics Technol. Lett. 11(11), 1411–1413 (1999).
[Crossref]

J. Lightwave Technol. (2)

J. Quantum Electron. (1)

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” J. Quantum Electron. 39(1), 141–148 (2003).
[Crossref]

Nat. Photonics (2)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jacobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(9), 690–695 (2010).

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Opt. Commun. (1)

T. Vivero, N. Calabretta, I. Tafur Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, J. Mørk, T. Vivero, N. Calabretta, I. T. Monroy, G. Kassar, F. Öhman, K. Yvind, A. P. González-Marcos, and J. Mørk, “2R-regeneration in a monolithically integrated four-section SOA-EA chip,” Opt. Commun. 282(1), 117–121 (2009).

Opt. Express (4)

Opt. Lett. (4)

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Other (3)

K. Lenglé, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, T.-N. Nguyen, C. Pareige, R. Madec, J.-C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10 Gb/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in European Conference and Exhibition on Optical Communication (2012).

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference and Exhibition on Optical Communication (1998).

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic views of (a) conventional optical amplitude regenerators and (b) selective amplitude-level regenerators, specialized for either mark ( P in P 0  ) or space ( P in P 0 ) level of input data signal by controlling input data signal power Pin. Dashed lines show standard mark level amplitude, while dotted lines show distorted mark or space level amplitude.
Fig. 2
Fig. 2 Experimental setup for selective amplitude regenerator. MLLD: Mode-locked laser-diode, PPG: Pulse pattern generator, PC: Polarization controller, LNM: LiNbO3 intensity modulator, EDFA: Erbium doped fiber amplifier, BPF: Band-pass filter, ECL: External-cavity laser-diode, OC: Optical coupler, ISO: Isolator, R-BPF: Rectangular-shaped BPF, PD: Photo-diode, EA: Error analyzer, OSC: sampling Oscilloscope.
Fig. 3
Fig. 3 Normalized pulse train waveforms of (a) input signal and regenerated signal when the input signal power injected into QD-SOA was set to (b) –12 dBm and (c) 3.0 dBm.
Fig. 4
Fig. 4 I/O power-transfer function of regenerator. Input data signal power of (a) –12 dBm, (b) –9.0 dBm, (c) –6.0 dBm, (d) –3.0 dBm, (e) –2.5 dBm, (f) –2.0 dBm, (g) –1.5 dBm, (h) –1.0 dBm, (i) –0.5 dBm, (j) 0 dBm, (k) 0.5 dBm, (l) 1.0 dBm, (m) 1.5 dBm, (n) 2.0 dBm, (o) 2.5 dBm, and (p) 3.0 dBm, respectively.
Fig. 5
Fig. 5 (a) Spectra of input data signal and CW probe at input (black) and output (red) of QD-SOA. (b) Spectrum of regenerated signal after blue-chirp spectral slicing using R-BPF. Dashed line shows center wavelength of CW probe.
Fig. 6
Fig. 6 Waveforms of space-level distorted signal pulse trains (a) before and (b) after amplitude regeneration. Red dotted line shows highest amplitude of distorted pulse train at space level. Blue dashed line shows average amplitude of regenerated pulse train at space level.
Fig. 7
Fig. 7 BER characteristics of input data and regenerated signals. Insets show eye-patterns of input data and regenerated signals.
Fig. 8
Fig. 8 Waveforms of mark-level distorted signal pulse trains (a) before and (b) after amplitude regeneration. Red dotted line shows lowest amplitude distorted pulse train at mark level. Blue dashed line shows average amplitude of regenerated pulse train at mark level.
Fig. 9
Fig. 9 BER characteristics of input data and regenerated signals. Insets show eye-patterns of input data and regenerated signals.

Metrics