Abstract

In recent years, biomaterials have increasingly attracted attention on surface-enhanced Raman spectroscopy (SERS) due to their well Raman performance while metal particles are combined with biological substrates. Therefore, we propose an environmentally friendly substrate based on silver-plated cicada wings with seamless graphene layer (Gr-AgNPs-C.w.), which can be prepared with a simple and inexpensive method. Compared with AgNPs-C.w., Gr-AgNPs-C.w. hybrids show better SERS performance with high sensitivity, good uniformity and good stability with R6G detection. The minimum detected concentration can reach 10−15 M, and the value of R2 can reach 0.996, respectively. Theoretical simulation demonstrates the situation of electromagnetic field through COMSOL software. In addition, due to the affinity of graphene for biomolecules, we can successfully detect the DNA biomolecules through a simple process. Therefore, this cheap and efficient natural SERS substrate has great potential for a considerable number of biochemical SERS applications and can broaden the way in which multiple SERS platforms derived from other natural materials are prepared.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection

Cheng Yang, Yuanyuan Xu, Minghong Wang, Tianming Li, Yanyan Huo, Chuanxi Yang, and Baoyuan Man
Opt. Express 26(8) 10023-10037 (2018)

SERS and the photo-catalytic performance of Ag/TiO2/graphene composites

Xiaolei Zhang, Ning Wang, Ruijia Liu, Xinyu Wang, Yong Zhu, and Jie Zhang
Opt. Mater. Express 8(4) 704-717 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  3. C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
    [Crossref] [PubMed]
  4. L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
    [Crossref] [PubMed]
  5. X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
    [Crossref]
  6. J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
    [Crossref] [PubMed]
  7. K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
    [Crossref] [PubMed]
  8. Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
    [Crossref] [PubMed]
  9. C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
    [Crossref] [PubMed]
  10. C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).
  11. W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
    [Crossref]
  12. R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
    [Crossref] [PubMed]
  13. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
    [Crossref]
  14. Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
    [Crossref] [PubMed]
  15. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  16. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  17. T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores,” Appl. Opt. 46(18), 3878–3890 (2007).
    [Crossref] [PubMed]
  18. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
    [Crossref] [PubMed]
  19. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
    [Crossref]
  20. J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
    [Crossref] [PubMed]
  21. J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
    [Crossref] [PubMed]
  22. Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
    [Crossref] [PubMed]
  23. C. Mu, J. P. Zhang, and D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
    [Crossref] [PubMed]
  24. S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
    [Crossref]
  25. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  26. Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
    [Crossref]
  27. Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
    [Crossref]
  28. J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
    [Crossref] [PubMed]
  29. M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
    [Crossref] [PubMed]
  30. C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
    [Crossref]
  31. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
    [Crossref] [PubMed]
  32. T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
    [Crossref] [PubMed]
  33. C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
    [Crossref] [PubMed]
  34. W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).
  35. Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
    [Crossref] [PubMed]
  36. K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
    [Crossref]
  37. J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
    [Crossref] [PubMed]
  38. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  39. P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
    [Crossref]
  40. X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
    [Crossref] [PubMed]
  41. Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
    [Crossref] [PubMed]
  42. G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
    [Crossref]
  43. S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
    [Crossref] [PubMed]

2018 (11)

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

2017 (5)

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

2016 (4)

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

2015 (3)

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

2013 (3)

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

2012 (4)

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref] [PubMed]

2011 (1)

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

2010 (3)

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

C. Mu, J. P. Zhang, and D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[Crossref] [PubMed]

2008 (3)

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

2007 (3)

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores,” Appl. Opt. 46(18), 3878–3890 (2007).
[Crossref] [PubMed]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1995 (1)

Abell, J.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Alexander, T. A.

Atashbar, M. Z.

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Avuthu, S. G. R.

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Cao, E.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Chen, C.

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

Chen, C. S.

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Chen, P.

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Chen, T. Y.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Chen, X. J.

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Chen, Y.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

Cheng, C.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Chu, H.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Chui, Y. S.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Cong, C.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Dai, Y.

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Dai, Z.

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
[Crossref]

Deng, H.

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Doering, W. E.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Duyne, R. P.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Emamian, S.

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Eshkeiti, A.

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Fan, H. J.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Fang, Y.

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
[Crossref]

Feng, D.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Freeman, R. G.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Fu, L.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Gao, S.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Gao, S. S.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Gao, X.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Gao, X. G.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Goodacre, R.

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Guan, C.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Guo, C.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Guo, J.

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Guo, Y.

Halas, N. J.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, L. F.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Hsu, C. L.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Hu, L.

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Huang, J. A.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Huo, Y.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Huo, Y. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jarvis, R. M.

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Jensen, L.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Jia, X.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Jiang, C.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref] [PubMed]

Jiang, K.

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Jiang, L.

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Jiang, S.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Jiang, S. Z.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Ju, J.

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Kang, T.

Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
[Crossref] [PubMed]

Kim, D.

Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
[Crossref]

Le, D. M.

Lee, S. T.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Lee, Y. H.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Li, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Li, C. H.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Li, C. M.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Li, H.

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Li, K.

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Li, L. J.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Li, R.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Li, Z.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liang, A.

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Liang, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Lin, C. T.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lin, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Liu, A.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Liu, A. H.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, H.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Liu, J.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Liu, M.

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Liu, X.

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Liu, X. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, Y.

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Loan, P. T. K.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lu, Y.

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Ma, W.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

Man, B.

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Man, B. Y.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Mu, C.

C. Mu, J. P. Zhang, and D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[Crossref] [PubMed]

Narakathu, B. B.

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Natan, M. J.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nie, S. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Pan, J.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Piotti, M. E.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Qian, X. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Qiu, C.

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref] [PubMed]

Qiu, H.

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Ren, L.

Ren, Y.

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Schatz, G. C.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Shen, L.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Shi, G.

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

Shin, Y.

Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
[Crossref] [PubMed]

Si, H.

Si, S.

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Singh, J. P.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Song, J.

Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
[Crossref] [PubMed]

Song, Y.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Sun, M.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Sun, M. L.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Sun, X.

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sun, Z. C.

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Sung, J.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Tian, J.

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Tripp, R. A.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Tse-Wei Wang, J.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Wang, F.

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Wang, H.

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref] [PubMed]

Wang, J.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Wang, L.

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Wang, M.

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Wang, P.

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
[Crossref]

Watson, G. S.

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Watson, J. A.

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Wei, D.

Wei, K. H.

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Wei, Q.

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Wong, T. L.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Wu, T.

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Wu, W.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Xiao, X.

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Xiu, X.

Xu, D.

C. Mu, J. P. Zhang, and D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[Crossref] [PubMed]

Xu, J.

Xu, S.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Xu, S. C.

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Xu, Y. Y.

Yan, Q.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Yan, X.

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Yang, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Yang, H.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Yang, W.

Yu, J.

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Yue, W.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Zhan, J.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Zhang, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

Zhang, J.

Zhang, J. P.

C. Mu, J. P. Zhang, and D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[Crossref] [PubMed]

Zhang, L.

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref] [PubMed]

Zhang, W.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhang, W. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Zhang, X. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X. L.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhang, Y. L.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

Zhao, X.

Zhao, Y.

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Zhao, Y. Q.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zheng, Y.

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Zhou, Y.

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Zhu, J.

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

Zhu, Y.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Zou, S.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

Y. Shin, J. Song, D. Kim, and T. Kang, “Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control,” Adv. Mater. 27(29), 4344–4350 (2015).
[Crossref] [PubMed]

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Adv. Mater. Technol. (1)

C. Li, J. Yu, S. Xu, S. Jiang, X. Xiu, C. Chen, A. Liu, T. Wu, B. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high‐performance SERS application,” Adv. Mater. Technol. 3(11) 1800174 (2018).

Appl. Opt. (1)

Appl. Spectrosc. (1)

Appl. Surf. Sci. (2)

P. Chen, H. Qiu, S. Xu, X. Liu, Z. Li, L. Hu, C. Li, J. Guo, S. Jiang, and Y. Huo, “A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system,” Appl. Surf. Sci. 375, 207–214 (2016).
[Crossref]

Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, and X. Yan, “High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing,” Appl. Surf. Sci. 436, 391–397 (2018).
[Crossref]

Biosens. Bioelectron. (1)

T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

R. M. Jarvis and R. Goodacre, “Characterisation and identification of bacteria using SERS,” Chem. Soc. Rev. 37(5), 931–936 (2008).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, and C. M. Li, “A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage,” Energy Environ. Sci. 4(12), 4954–4961 (2011).

J. Am. Chem. Soc. (1)

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Duyne, “Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles,” J. Am. Chem. Soc. 129(24), 7647–7656 (2007).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

C. Qiu, L. Zhang, H. Wang, and C. Jiang, “Surface-enhanced Raman scattering on hierarchical porous cuprous oxide nanostructures in nanoshell and thin-film geometries,” J. Phys. Chem. Lett. 3(5), 651–657 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Nanoscale (4)

J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8(22), 11487–11493 (2016).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Nanotechnology (3)

C. Mu, J. P. Zhang, and D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[Crossref] [PubMed]

C. Zhang, B. Y. Man, C. Yang, S. Z. Jiang, M. Liu, C. S. Chen, S. C. Xu, Z. C. Sun, X. G. Gao, and X. J. Chen, “Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system,” Nanotechnology 24(39), 395603 (2013).
[Crossref] [PubMed]

K. Li, Y. Wang, K. Jiang, Y. Ren, Y. Dai, Y. Lu, and P. Wang, “Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering,” Nanotechnology 27(49), 495402 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, “Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor,” Nat. Commun. 8, 14902 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Commun. (1)

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Opt. Express (6)

Y. Wang, M. Wang, X. Sun, G. Shi, J. Zhang, W. Ma, and L. Ren, “Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin,” Opt. Express 26(17), 22168–22181 (2018).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

PLoS One (1)

M. Sun, A. Liang, G. S. Watson, J. A. Watson, Y. Zheng, J. Ju, and L. Jiang, “Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings,” PLoS One 7(4), e35056 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS,” Sci. Rep. 6(1), 25243 (2016).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sens. Actuators B Chem. (4)

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2018).
[Crossref]

C. Zhang, Z. Li, S. Jiang, C. Li, S. Xu, J. Yu, Z. Li, M. Wang, A. Liu, and B. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Z. Lu, Y. Liu, M. Wang, C. Zhang, Z. Li, Y. Huo, Z. Li, S. Xu, B. Man, and S. Jiang, “A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system,” Sens. Actuators B Chem. 261, 1–10 (2018).
[Crossref]

S. Emamian, A. Eshkeiti, B. B. Narakathu, S. G. R. Avuthu, and M. Z. Atashbar, “Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2, 4-dinitrotoluene (DNT) vapor,” Sens. Actuators B Chem. 217, 129–135 (2015).
[Crossref]

Small (1)

X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, and C. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale hot spots created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. Chen and Y. Fang, “Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 733–737 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The preparation processes of the Gr-AgNPs-C.w. substrate.
Fig. 2
Fig. 2 (a) SERS signal of 10−9 M R6G on AgNPs-C.w. substrate with different sputtering time. (b) Raman spectra of 10−9 M R6G on the Gr-AgNPs-C.w.-200, AgNPs-C.w.-200 and Gr-AgNPs-C.w.-220 substrate.
Fig. 3
Fig. 3 (a)-(c) are the top-view SEM images of the AgNPs-C.w.-80, AgNPs-C.w.-140 and AgNPs-C.w.-200, the insert are the large-scale SEM images. (d) The cross-sectional SEM image of AgNPs-C.w.-200 substrate. The insert pattern shows the relationship of sputtering time and nanocolumn gap. (e) The cross-sectional SEM image of Gr-AgNPs-C.w.-200 substrate. (f) The cross-sectional SEM image of Gr-AgNPs-C.w.-220 substrate. (g) TEM image of the single nanocolumn of Gr-AgNPs-C.w.-200 substrate, the insert is a large-scale TEM image. (h) shows Raman spectra of graphene oxide and chemically synthesized graphene. (i) Raman mapping of 2910 cm−1 peak of Gr on the Gr-AgNPs-C.w.-200 substrate collected over an area of 20 × 20 μm2.
Fig. 4
Fig. 4 (a) and (b) are SERS signals of different concentrations of R6G molecules on AgNPs-C.w.-200 and Gr-AgNPs-C.w.-200 substrates. (c) The Raman intensity of the 610 cm−1 peak on a logarithmic scaleas a function of different concentrations. (d) SERS signal of 10−9 M R6G on AgNPs-C.w.-200 and Gr-AgNPs-C.w.-200 substrates and 10−3 M R6G on blank SiO2.
Fig. 5
Fig. 5 (a) 15 Raman signals of R6G at a concentration of 10−9 M collected from 15 different Gr-AgNPs-C.w.-200 substrates. (b) The intensity of the 610 cm−1 peak on Gr-AgNPs-C.w.-200 substrate. (c) and (d) are respectively the SERS signals of R6G with the concentration of 10−9 M on the AgNPs-C.w.-200 and Gr-AgNPs-C.w.-200 substrates under the exposure to the common air environment for 0 day and 15 days.
Fig. 6
Fig. 6 (a) and (b) are COMSOL simulations of the local electric field distribution of Gr-AgNPs-C.w.-200 and AgNPs-C.w. substrate-200, respectively, with a gap of 10 nm. (c)-(e) shows that the change in the electromagnetic field caused by changing the nanocolumn gap (30 nm, 50 nm and 70 nm), respectively. (f) Fitting curve of EF variation caused by nano-column gap change.
Fig. 7
Fig. 7 (a) The mixing process of Gr-AgNPs-C.w.-DNA and effect diagram of DNA detection with 532 nm. (b)-(d) represent Raman spectra for PBASE, probe DNA and FC DNA, the insert are large-scale patterns. (e) shows the detection of DNA molecules after 0 days and 7 days with a large-scale pattern insert.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= I SERS / N SERS I RS / N RS .

Metrics