Abstract

Photoluminescence (PL) of Au nanoparticles is appealing for various biological applications, owing to their unique advantages. However, widespread applications are still limited by their extremely low quantum yield. Here, we report on the giant PL enhancement of aggregated Au nanospheres by continuous-wave (CW) laser irradiation. Our studies show that the laser-induced PL enhancement is influenced by the wavelength and power density of irradiation laser, as well as the size of Au nanospheres. The averaged intensity of Au nanospheres after irradiation by 405 nm CW laser at power density of 6 MW/cm2 is 75 times that of the as-prepared sample, where the highest enhancement of 150 folds is obtained. The giant PL enhancement is attributed to laser-induced photothermal welding and reshaping of adjacent Au nanospheres, which will dramatically enhance the incidence light field in the crevices around the welding areas by surface plasmon resonance. These studies not only declare that Au nanospheres are expected to find many new applications in PL-based biosensing and bioiamging, but also suggest that CW laser can be used as a versatile tool to weld and reshape the Au nanospheres in order to build up functionalized electronic and optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study on femtosecond laser optical breakdown threshold in water mediated by aluminum nanoparticle coated with silica

Qing Lin, Naifei Ren, Yunpeng Ren, Yan Chen, Zhiduo Xin, Yongsheng Fan, Xudong Ren, and Lin Li
Opt. Express 26(26) 34200-34213 (2018)

Femtosecond laser-induced microwelding of silver and copper

Hong Huang, Anming Hu, Peng Peng, Walter Winston Duley, and Yunhong Zhou
Appl. Opt. 52(6) 1211-1217 (2013)

Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation

Frances Camille P. Masim, Hao-Li Liu, Matteo Porta, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, Wei-Hung Hsu, and Koji Hatanaka
Opt. Express 24(13) 14781-14792 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  2. G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
    [Crossref] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014).
    [Crossref]
  4. L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angew. Chem. Int. Ed. Engl. 52(26), 6689–6693 (2013).
    [Crossref] [PubMed]
  5. W. Hou and S. B. Cronin, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
    [Crossref]
  6. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  7. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  8. A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
    [Crossref] [PubMed]
  9. V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
    [Crossref] [PubMed]
  10. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
    [Crossref] [PubMed]
  11. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [Crossref] [PubMed]
  12. J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
    [Crossref] [PubMed]
  13. L. Tong, T. Zhu, and Z. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chem. Soc. Rev. 40(3), 1296–1304 (2011).
    [Crossref] [PubMed]
  14. C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
    [Crossref] [PubMed]
  15. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J. F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
    [Crossref] [PubMed]
  16. A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
    [Crossref] [PubMed]
  17. H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008).
    [Crossref] [PubMed]
  18. R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
    [Crossref] [PubMed]
  19. Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
    [Crossref] [PubMed]
  20. F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
    [Crossref] [PubMed]
  21. E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
    [Crossref]
  22. A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem 12(8), 1536–1541 (2011).
    [Crossref] [PubMed]
  23. Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
    [Crossref]
  24. M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
    [Crossref] [PubMed]
  25. D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Control. Release 149(1), 65–71 (2011).
    [Crossref] [PubMed]
  26. W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
    [Crossref] [PubMed]
  27. M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
    [Crossref] [PubMed]
  28. D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
    [Crossref] [PubMed]
  29. Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
    [Crossref]
  30. H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
    [Crossref]
  31. Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
    [Crossref]
  32. Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
    [Crossref] [PubMed]
  33. Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
    [Crossref] [PubMed]
  34. S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
    [Crossref]
  35. D. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev. 117(5), 3990–4103 (2017).
    [Crossref] [PubMed]
  36. S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. Chem. 13(1), 28–54 (2012).
    [Crossref]
  37. L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
    [Crossref] [PubMed]
  38. G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
    [Crossref] [PubMed]
  39. S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
    [Crossref]
  40. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
    [Crossref] [PubMed]

2018 (1)

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

2017 (5)

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

D. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[Crossref] [PubMed]

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
[Crossref] [PubMed]

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

2016 (1)

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

2015 (3)

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

2014 (5)

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014).
[Crossref]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

2013 (6)

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angew. Chem. Int. Ed. Engl. 52(26), 6689–6693 (2013).
[Crossref] [PubMed]

W. Hou and S. B. Cronin, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

2012 (7)

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J. F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
[Crossref] [PubMed]

F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. Chem. 13(1), 28–54 (2012).
[Crossref]

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

2011 (6)

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Control. Release 149(1), 65–71 (2011).
[Crossref] [PubMed]

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem 12(8), 1536–1541 (2011).
[Crossref] [PubMed]

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

L. Tong, T. Zhu, and Z. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chem. Soc. Rev. 40(3), 1296–1304 (2011).
[Crossref] [PubMed]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2008 (2)

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008).
[Crossref] [PubMed]

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

2007 (1)

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

2005 (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

2004 (1)

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Aizpurua, J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Altantzis, T.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baffou, G.

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

Bals, S.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Bamber, J.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Bañares, L.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Barbillon, G.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Barcikowski, S.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[Crossref] [PubMed]

Barnard, J. S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Baumberg, J. J.

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014).
[Crossref]

Brongersma, M. L.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Byeon, C. C.

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Cai, W.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Cai, Y. Y.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Camposeo, A.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Cardinal, M. F.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Cass, A. E. G.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Cha, J. J.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Chang, S.-H. G.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Chang, W. S.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Chauvat, D.

Chen, R.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Chen, R. Y.

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

Cheng, F.-Y.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Cheng, Y.-S.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Chikkaraddy, R.

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

Choi, W. I.

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Connor, S. T.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Cortie, M. B.

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Control. Release 149(1), 65–71 (2011).
[Crossref] [PubMed]

Cronin, S. B.

W. Hou and S. B. Cronin, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Crut, A.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Cui, Y.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Dai, S. W.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

de Wilde, Y.

Del Carro, P.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Del Fatti, N.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Dominguez-Medina, S.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Elson, D. S.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Fales, A. M.

A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Gaiduk, A.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem 12(8), 1536–1541 (2011).
[Crossref] [PubMed]

Gallina, M. E.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Gao, N.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Garnett, E. C.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Gittins, D.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Gökce, B.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[Crossref] [PubMed]

Gong, Q.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

González-Izquierdo, J.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

González-Rubio, G.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014).
[Crossref]

Greyson Christoforo, M.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Guan, Z.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
[Crossref] [PubMed]

Guerrero-Martínez, A.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Han, F.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
[Crossref] [PubMed]

Hanna, G. B.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Harris-Birtill, D.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Hashimoto, S.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. Chem. 13(1), 28–54 (2012).
[Crossref]

He, H.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008).
[Crossref] [PubMed]

Herrmann, L. O.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Hou, L.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Hou, W.

W. Hou and S. B. Cronin, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Huang, D.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Ilev, I. K.

A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
[Crossref] [PubMed]

Jacques, V.

Jia, S.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Jia, S. T.

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

Jiang, C.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Jiang, X. F.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Joplin, A.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Juodkazis, S.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Juvé, V.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Kang, C.

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Kasera, S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Khatua, S.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

Kim, J.-Y.

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Kim, Y. H.

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Kivshar, Y.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Klar, T.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Kleemann, M. E.

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

Kuchmizhak, A. A.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Le Xuan, L.

Lei, F. H.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Li, Q.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Li, W.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Li, Z.-Y.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Link, S.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Liu, G. P.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Liu, J. G.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Liu, L.

L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angew. Chem. Int. Ed. Engl. 52(26), 6689–6693 (2013).
[Crossref] [PubMed]

Liu, Z.

L. Tong, T. Zhu, and Z. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chem. Soc. Rev. 40(3), 1296–1304 (2011).
[Crossref] [PubMed]

Liz-Marzán, L. M.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Lombardi, A.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Lu, G.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Luo, C.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Mahmood, F.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Maioli, P.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Makarov, S. V.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Manco, R.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Marquette, C. A.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mayya, K.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

McGehee, M. D.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Mertens, J.

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Narang, P.

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Niidome, T.

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Control. Release 149(1), 65–71 (2011).
[Crossref] [PubMed]

Nordlander, P.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Orrit, M.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem 12(8), 1536–1541 (2011).
[Crossref] [PubMed]

Ouyang, Q.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Ouyang, S.

L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angew. Chem. Int. Ed. Engl. 52(26), 6689–6693 (2013).
[Crossref] [PubMed]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Pan, Y.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Parak, W. J.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Peña-Rodríguez, O.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Pérez-Juste, J.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Perriat, P.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Persano, L.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Pfefer, T. J.

A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
[Crossref] [PubMed]

Pisignano, D.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Pissuwan, D.

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Control. Release 149(1), 65–71 (2011).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Porter, A. E.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Qiao, Z.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Qin, C.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Qin, C. B.

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

Qiu, M.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

Ren, J.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008).
[Crossref] [PubMed]

Rivera, A.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Rivera Gil, P.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Roch, J. F.

Roux, S.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Ruan, Q.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Ruenraroengsak, P.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Rybin, M. V.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Scherman, O. A.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Shah, A.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Shanmugam, V.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Shao, L.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Shu, Y.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Singh, M.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Slablab, A.

Sperling, R. A.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Su, C.-H.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Sung, E.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Swanglap, P.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Tae, G.

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Tajik, M.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Tan, T. S.

F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
[Crossref] [PubMed]

Tardajos, G.

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Tauzin, L. J.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Tillement, O.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Tong, L.

L. Tong, T. Zhu, and Z. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chem. Soc. Rev. 40(3), 1296–1304 (2011).
[Crossref] [PubMed]

Tsai, M.-F.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Tserkezis, C.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Uwada, T.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. Chem. 13(1), 28–54 (2012).
[Crossref]

Valev, V. K.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Vallée, F.

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

Vogt, W. C.

A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
[Crossref] [PubMed]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

Wang, B.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Wang, J.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Wang, Q.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Wang, W.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Wang, Y.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Werner, D.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. Chem. 13(1), 28–54 (2012).
[Crossref]

Willingham, B.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

Wu, H.

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Xia, Y.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Xiao, L.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Xiao, L. T.

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

Xie, C.

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008).
[Crossref] [PubMed]

Xu, Q. H.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
[Crossref] [PubMed]

Yang, H.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Yang, H. B.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Yang, Y. Q.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Ye, J.

L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angew. Chem. Int. Ed. Engl. 52(26), 6689–6693 (2013).
[Crossref] [PubMed]

Yeh, C.-S.

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Yorulmaz, M.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem 12(8), 1536–1541 (2011).
[Crossref] [PubMed]

Yuan, P.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Zalogina, A. S.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Zanella, M.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, C.

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Zhang, D.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[Crossref] [PubMed]

Zhang, F.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Zhang, G.

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Zhang, G. F.

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

Zhang, H.

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Zhang, T.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Zhao, D.

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Zhao, T.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Zhou, H. T.

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

Zhou, N.

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

Zhou, Y.

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Zhu, T.

L. Tong, T. Zhu, and Z. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chem. Soc. Rev. 40(3), 1296–1304 (2011).
[Crossref] [PubMed]

Zielinski, M.

Zijlstra, P.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

Zuev, D. A.

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

C. Jiang, T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and Q. H. Xu, “Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles,” ACS Appl. Mater. Interfaces 5(11), 4972–4977 (2013).
[Crossref] [PubMed]

F. Han, Z. Guan, T. S. Tan, and Q. H. Xu, “Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles,” ACS Appl. Mater. Interfaces 4(9), 4746–4751 (2012).
[Crossref] [PubMed]

ACS Nano (5)

W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, and C.-S. Yeh, “Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, and S. Link, “Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers,” ACS Nano 12(2), 976–985 (2018).
[Crossref] [PubMed]

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio,” ACS Nano 6(8), 7177–7184 (2012).
[Crossref] [PubMed]

A. Camposeo, L. Persano, R. Manco, Y. Wang, P. Del Carro, C. Zhang, Z.-Y. Li, D. Pisignano, and Y. Xia, “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9(10), 10047–10054 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

W. Hou and S. B. Cronin, “A Review of Surface Plasmon Resonance-Enhanced Photocatalysis,” Adv. Funct. Mater. 23(13), 1612–1619 (2013).
[Crossref]

Adv. Opt. Mater. (1)

Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Adv. Opt. Mater. 2(1), 65–73 (2014).
[Crossref]

Anal. Chem. (1)

H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem. 80(15), 5951–5957 (2008).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angew. Chem. Int. Ed. Engl. 52(26), 6689–6693 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

H. T. Zhou, C. B. Qin, R. Y. Chen, G. F. Zhang, L. T. Xiao, and S. T. Jia, “Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate),” Appl. Phys. Lett. 105(15), 153301 (2014).
[Crossref]

S. W. Dai, Q. Li, G. P. Liu, H. B. Yang, Y. Q. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108(12), 121103 (2016).
[Crossref]

Carbon (1)

Y. Gao, C. Qin, Z. Qiao, B. Wang, W. Li, G. Zhang, R. Chen, L. Xiao, and S. Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon 93, 843–850 (2015).
[Crossref]

Chem. Phys. Lett. (1)

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503(4-6), 256–261 (2011).
[Crossref]

Chem. Rev. (3)

D. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Chem. Soc. Rev. (3)

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898–3907 (2014).
[Crossref] [PubMed]

L. Tong, T. Zhu, and Z. Liu, “Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles,” Chem. Soc. Rev. 40(3), 1296–1304 (2011).
[Crossref] [PubMed]

ChemPhysChem (1)

A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem 12(8), 1536–1541 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

J. Control. Release (1)

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Control. Release 149(1), 65–71 (2011).
[Crossref] [PubMed]

J. Photochem. Photobiol. Chem. (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. Chem. 13(1), 28–54 (2012).
[Crossref]

J. Phys. Chem. B (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. Kivshar, “Light-Induced Tuning and Reconfiguration of Nanophotonic Structures,” Laser Photonics Rev. 11(5), 1700108 (2017).
[Crossref]

Nano Lett. (4)

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12(8), 4385–4391 (2012).
[Crossref] [PubMed]

V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13(5), 2234–2240 (2013).
[Crossref] [PubMed]

J. Mertens, M. E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How Light Is Emitted by Plasmonic Metals,” Nano Lett. 17(4), 2568–2574 (2017).
[Crossref] [PubMed]

G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods,” Nano Lett. 15(12), 8282–8288 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2014).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Opt. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 70(20), 205424 (2004).
[Crossref]

PLoS One (1)

D. Harris-Birtill, M. Singh, Y. Zhou, A. Shah, P. Ruenraroengsak, M. E. Gallina, G. B. Hanna, A. E. G. Cass, A. E. Porter, J. Bamber, and D. S. Elson, “Gold nanorod reshaping in vitro and in vivo using a continuous wave laser,” PLoS One 12(10), e0185990 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

A. M. Fales, W. C. Vogt, T. J. Pfefer, and I. K. Ilev, “Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles,” Sci. Rep. 7(1), 15704 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) SEM and (b), (c) TEM images of Au nanospheres (NSs) with the averaged diameter of 160 nm (NS-160). Scale bar: (a) 500 nm; (b) 200 nm; (c) 100 nm. (d) Size distribution of NS-160, fitted by Gauss function. (e) Normalized extinction and (f) photoluminescence (PL) spectra of three sizes Au NSs, respectively. PL spectra were excited by 405 nm CW laser.
Fig. 2
Fig. 2 PL enhancement and corresponding spectra profiles during laser irradiation. (a) Confocal PL imaging of the prepared sample. (b) Typical PL trajectory of aggregated NS-160 Au NSs during 405 nm laser irradiation at the power density of 6 MW/cm2. (c) The corresponding spectral profiles under different irradiation duration. The integration is 1 s and time interval is 10 s. (d) PL and scattering spectra (SS) of aggregated NS-160 Au NSs after irradiation with duration of 0 s, 60 s and 110 s, respectively.
Fig. 3
Fig. 3 PL enhancement factors vary under different irradiation conditions. (a)-(c) Different power density, 0.3 MW/cm2, 6 MW/cm2, and 30 MW/cm2, respectively. (b), (e), and (f) Different laser wavelength, 405 nm, 488 nm, and 532 nm, respectively. (b), (g), and (h) Different averaged diameter, NS-160, NS-100, and NS-60, respectively. (d) Summarized central values of histograms under different conditions.
Fig. 4
Fig. 4 Maximum enhancement times vary under different irradiation conditions. (a)-(c) Different power density, 0.3 MW/cm2, 6 MW/cm2, and 30 MW/cm2, respectively. (b), (e), and (f) Different laser wavelength, 405 nm, 488 nm, and 532 nm, respectively. (b), (g), and (h) Different averaged diameter, NS-160, NS-100, and NS-60, respectively. (d) Summarized central values of histograms under different conditions.
Fig. 5
Fig. 5 Proposed PL enhancement mechanism. (a)TEM image of prepared NS-160, (b)-(d) SEM images of NS-160 observed after different irradiation duration. (e-h) Representation welding and reshaping of Au NSs during laser irradiation.
Fig. 6
Fig. 6 PL trajectory of NS-160 under 405 nm laser irradiation with different power density. For convenience of comparison, PL intensity under 0.12 MW/cm2 were multiplied by 50.
Fig. 7
Fig. 7 Morphology characterization of Au NSs. (a) SEM and (b) TEM images of NS-100. Scale bar: (a) 400 nm, (b) 100 nm. (c) Size distribution of NS-100, fitted by Gauss function with central at 105 nm and FWHM of 10 nm. (d) SEM and (e) TEM images of NS-60. Scale bar: (d) 500 nm, (e) 100 nm. (f) Size distribution of NS-60, fitted by Gauss function with central at 56 nm and FWHM of 7 nm.
Fig. 8
Fig. 8 PL spectra and the corresponding scattering spectra (SS) of NS-160 (a), NS-100 (b), and NS-60 (c), respectively.
Fig. 9
Fig. 9 SEM characterization of prepared samples. (a) NS-160. (b) NS-100. (c) NS-60.
Fig. 10
Fig. 10 Enhancement factor of NS-160 as a function of irradiation duration. The sample was irradiated by 405 nm at the power density of 6 MW/cm2. The PL enhancement factor is up to 150.
Fig. 11
Fig. 11 PL enhancement factors of NS-100 and NS-60 under different laser wavelength with the power density of 6 MW/cm2. (a)-(c) NS-100 under 405 nm, 488 nm, and 532 nm, respectively. (e)-(g) NS-60 under 405 nm, 488 nm, and 532 nm, respectively. (d) and (h) Summarized enhancement under different wavelengths.
Fig. 12
Fig. 12 Maximum enhancement times of NS-100 and NS-60 under different laser wavelength with the power density of 6 MW/cm2. (a)-(c) NS-100 under 405 nm, 488 nm, and 532 nm, respectively. (e)-(g) NS-60 under 405 nm, 488 nm, and 532 nm, respectively. (d) and (h) Summarized enhancement times under different wavelengths.
Fig. 13
Fig. 13 Typical enhancement factor of NS-160 under power density of (a) 0.3 MW/cm2, (b) 6 MW/cm2, and (c) 30 MW/cm2, respectively.
Fig. 14
Fig. 14 SEM images of NS-160 observed after laser irradiation. The melt Au NSs have been highlighted by dashed lines.

Metrics