Abstract

Achieving asymmetric transmission effects, especially in an ultra-broadband frequency region, is of particular importance in communication systems. Currently available asymmetric transmission metasurfaces are limited to narrow bands and low efficiencies because of the inherently dispersion effects and large transmission fluctuations. In this paper, we propose a new strategy to realize high efficiency and ultra-broadband asymmetric transmission in an ultra-thin profile by using the topologically coding optimization method. The meta-atom consists of two outer orthogonal gratings and a central lattice particle optimized by genetic algorithm. The optimized central lattice suppresses the transmission fluctuations by tuning the coupling among different metallic layers, resulting in very broad band and high transmissions. Experimental results show that our metasurface achieved perfect reflection over 95% and high cross-polarization transmission over 80% for y- and x-polarized incidence from 5.3 GHz to 16.7 GHz, respectively. Our findings pave a way to high-performance and broadband polarization transformers and polarization-controlled devices working in different frequency domains.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency broadband vortex beam generator based on transmissive metasurface

Shiwei Tang, Xike Li, Weikang Pan, Jun Zhou, Tao Jiang, and Fei Ding
Opt. Express 27(4) 4281-4291 (2019)

Ultra-broadband linear polarization converter based on anisotropic metasurface

Jin Xu, Rongqiang Li, Shenyun Wang, and Tiancheng Han
Opt. Express 26(20) 26235-26241 (2018)

Broadband high efficiency asymmetric transmission of achiral metamaterials

Wenjun Fan, Yanrong Wang, Ruqiang Zheng, Dahe Liu, and Jinwei Shi
Opt. Express 23(15) 19535-19541 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  2. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  3. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref] [PubMed]
  4. F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
    [Crossref]
  5. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  6. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
    [Crossref] [PubMed]
  7. T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
    [Crossref]
  8. H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
    [Crossref]
  9. W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
    [Crossref]
  10. K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
    [Crossref]
  11. A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
    [Crossref] [PubMed]
  12. Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
    [Crossref] [PubMed]
  13. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
    [Crossref]
  14. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  15. W. W. Wan, J. Gao, and X. D. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5(21), 1700541 (2017).
    [Crossref]
  16. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  17. L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
    [Crossref] [PubMed]
  18. F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577–11586 (2018).
    [Crossref] [PubMed]
  19. J. Deng, Z. Li, G. Zheng, J. Tao, Q. Dai, L. Deng, P. He, Q. Deng, and Q. Mao, “Depth perception based 3D holograms enabled with polarization-independent metasurfaces,” Opt. Express 26(9), 11843–11849 (2018).
    [Crossref] [PubMed]
  20. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  21. Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
    [Crossref]
  22. Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
    [Crossref] [PubMed]
  23. Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
    [Crossref]
  24. Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
    [Crossref]
  25. Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
    [Crossref]
  26. J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
    [Crossref] [PubMed]
  27. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
    [Crossref]
  28. D. J. Liu, Z. Y. Xiao, and Z. H. Wang, “Multi-band asymmetric transmission and 90° polarization rotator based on bi-Layered metasurface with F-shaped structure,” Plasmonics 12(2), 1–8 (2016).
  29. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  30. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
    [Crossref]
  31. T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
    [Crossref]
  32. M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
    [Crossref]
  33. X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
    [Crossref]
  34. J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
    [Crossref]
  35. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  36. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B Condens. Matter 75(20), 205102 (2007).
    [Crossref]
  37. J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
    [Crossref]

2018 (11)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
[Crossref]

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
[Crossref] [PubMed]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577–11586 (2018).
[Crossref] [PubMed]

J. Deng, Z. Li, G. Zheng, J. Tao, Q. Dai, L. Deng, P. He, Q. Deng, and Q. Mao, “Depth perception based 3D holograms enabled with polarization-independent metasurfaces,” Opt. Express 26(9), 11843–11849 (2018).
[Crossref] [PubMed]

2017 (11)

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

W. W. Wan, J. Gao, and X. D. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5(21), 1700541 (2017).
[Crossref]

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

2016 (3)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

D. J. Liu, Z. Y. Xiao, and Z. H. Wang, “Multi-band asymmetric transmission and 90° polarization rotator based on bi-Layered metasurface with F-shaped structure,” Plasmonics 12(2), 1–8 (2016).

2015 (3)

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

2013 (3)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

2009 (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

2008 (1)

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

2007 (3)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B Condens. Matter 75(20), 205102 (2007).
[Crossref]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Azad, A. K.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Bo Li, Y.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
[Crossref]

Cai, T.

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H. T.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, R.

Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Chen, S. Q.

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Cheng, H.

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Dai, Q.

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deng, J.

Deng, L.

Deng, Q.

Deshpande, R. A.

F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
[Crossref]

Ding, F.

F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Ding, J.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Dong, J. F.

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Dong, Z. G.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Duan, J. W.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Efimov, A. V.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Fan, D.

Fedotov, V. A.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Feng Ma, H.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Gao, J.

W. W. Wan, J. Gao, and X. D. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5(21), 1700541 (2017).
[Crossref]

Gao, X. J.

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

Ge, Q. C.

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

Ghosh, S.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Giessen, H.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B Condens. Matter 75(20), 205102 (2007).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Guan, F. X.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Guo, H. J.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Guo, J.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Guo, W. L.

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

Hao, J.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

He, P.

He, Q.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hou, H. S.

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

Hu, G.

J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
[Crossref] [PubMed]

Ji, W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Ji, W. Y.

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

Jiang, M.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jin, R. C.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Jo, Y. J.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Jun Cui, T.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ke, Y.

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Kim, I.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Lederer, F.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Li, H. P.

Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

Li, J.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Li, J. Q.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Li, L.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Li, M. H.

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Li, M. L.

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Li, T. J.

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

Li, Y.

Li, Z.

Li, Z. C.

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liang, J. G.

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

Liang, Y.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Ling, X.

Liu, D. J.

D. J. Liu, Z. Y. Xiao, and Z. H. Wang, “Multi-band asymmetric transmission and 90° polarization rotator based on bi-Layered metasurface with F-shaped structure,” Plasmonics 12(2), 1–8 (2016).

Liu, G.

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

Liu, H.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Liu, J. Y.

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, K. Y.

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

Liu, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Liu, W. W.

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, X.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Liu, Y.

Liu, Z.

J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
[Crossref] [PubMed]

Liu, Z. Z.

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577–11586 (2018).
[Crossref] [PubMed]

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Luo, H.

Lv, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, Y.

Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Mao, Q.

Meng, H.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Menzel, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Meyrath, T. P.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B Condens. Matter 75(20), 205102 (2007).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Piao, Y. P.

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Plum, E.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Qian, H.

J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
[Crossref] [PubMed]

Qin, F. F.

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577–11586 (2018).
[Crossref] [PubMed]

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Qiu, C. W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Ran, Y. Z.

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rho, J.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Schwanecke, A. S.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Shi, J.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Singleton, J.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Sun, S. L.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Tang, S. W.

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Tao, J.

Taylor, A. J.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tian, J. G.

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Wan, W. W.

W. W. Wan, J. Gao, and X. D. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5(21), 1700541 (2017).
[Crossref]

Wan, X.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Wang, C.

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Wang, F.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Wang, G. M.

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Wang, H. B.

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Wang, Y.

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wang, Y. H.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Wang, Z.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Wang, Z. H.

D. J. Liu, Z. Y. Xiao, and Z. H. Wang, “Multi-band asymmetric transmission and 90° polarization rotator based on bi-Layered metasurface with F-shaped structure,” Plasmonics 12(2), 1–8 (2016).

Wei, Z.

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Wen, S.

Xiao, J. J.

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577–11586 (2018).
[Crossref] [PubMed]

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Xiao, Z. Y.

D. J. Liu, Z. Y. Xiao, and Z. H. Wang, “Multi-band asymmetric transmission and 90° polarization rotator based on bi-Layered metasurface with F-shaped structure,” Plasmonics 12(2), 1–8 (2016).

Xu, H. X.

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Yang, X. D.

W. W. Wan, J. Gao, and X. D. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5(21), 1700541 (2017).
[Crossref]

Yang, Y. Q.

F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
[Crossref]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yi, X.

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Yu, S.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yuan, Y.

Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B Condens. Matter 75(20), 205102 (2007).
[Crossref]

Zhai, X. M.

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Zhang, Q.

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577–11586 (2018).
[Crossref] [PubMed]

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

Zhang, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, W.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zhang, Z.

Zheludev, N. I.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zheng, G.

J. Deng, Z. Li, G. Zheng, J. Tao, Q. Dai, L. Deng, P. He, Q. Deng, and Q. Mao, “Depth perception based 3D holograms enabled with polarization-independent metasurfaces,” Opt. Express 26(9), 11843–11849 (2018).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhong, F.

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Zhou, J.

J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
[Crossref] [PubMed]

Zhou, L.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

Zhou, Y.

Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Zhu, Z.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Zhuang, Y. Q.

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

ACS Nano (2)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

J. Zhou, H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, “Broadband photonic spin hall meta-lens,” ACS Nano 12(1), 82–88 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

J. Y. Liu, Z. C. Li, W. W. Liu, H. Cheng, S. Q. Chen, and J. G. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

W. W. Wan, J. Gao, and X. D. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5(21), 1700541 (2017).
[Crossref]

AIP Adv. (1)

Y. Z. Ran, J. G. Liang, T. Cai, W. Y. Ji, and G. M. Wang, “High-performance broadband vortex beam generator based on double-layered reflective metasurface,” AIP Adv. 8(9), 095201 (2018).
[Crossref]

Ann. Phys. (1)

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. P. Li, J. G. Liang, and Y. Q. Zhuang, “Bifunctional Pancharatnam-Berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 530(1), 1700321 (2018).
[Crossref]

Appl. Phys. Lett. (3)

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Y. H. Wang, R. C. Jin, J. Q. Li, F. Zhong, H. Liu, I. Kim, Y. J. Jo, J. Rho, and Z. G. Dong, “Photonic spin Hall effect by the spin-orbt interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Chin. Phys. B (1)

K. Y. Liu, G. M. Wang, T. Cai, W. L. Guo, Y. Q. Zhuang, and G. Liu, “Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface,” Chin. Phys. B 27(8), 084101 (2018).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

H. P. Li, G. M. Wang, X. J. Gao, J. G. Liang, and H. S. Hou, “A novel metasurface for dual-mode and dual-band flat high-gain antenna application,” IEEE Trans. Antenn. Propag. 66(7), 3706–3711 (2018).
[Crossref]

J. Appl. Phys. (1)

Y. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

J. Electromagenet. Wave. (1)

X. Zhou, M. H. Li, H. B. Wang, C. Wang, X. M. Zhai, and J. F. Dong, “Mutual conversion and multi-band diode-like asymmetric transmission of linearly polarized waves in multi-layered metasurface,” J. Electromagenet. Wave. 31(8), 828–836 (2017).
[Crossref]

J. Opt. (1)

M. L. Li, Q. Zhang, F. F. Qin, Z. Z. Liu, Y. P. Piao, Y. Wang, and J. J. Xiao, “Microwave linear polarization rotator in abilayered chiral metasurface based on strong asymmetric transmission,” J. Opt. 19(7), 075101 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

W. L. Guo, G. M. Wang, H. P. Li, T. J. Li, Q. C. Ge, and Y. Q. Zhuang, “Design of anisotropic focusing metasurface and its application for high-gain lens antenna,” J. Phys. D Appl. Phys. 50(8), 085003 (2017).
[Crossref]

Nano Lett. (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007).
[Crossref]

Nanomaterials (Basel) (1)

Y. Liang, H. Liu, F. Wang, H. Meng, J. Guo, J. Li, and Z. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials (Basel) 8(5), 288–293 (2018).
[Crossref] [PubMed]

Nanophotonics (1)

F. Ding, Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics 7(6), 1129–1156 (2018).
[Crossref]

Nat. Commun. (1)

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Z. Ran, J. G. Liang, T. Cai, and H. P. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Opt. Express (3)

Phys. Rev. Appl. (1)

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Phys. Rev. B (1)

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77(9), 094201 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (1)

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B Condens. Matter 75(20), 205102 (2007).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Plasmonics (1)

D. J. Liu, Z. Y. Xiao, and Z. H. Wang, “Multi-band asymmetric transmission and 90° polarization rotator based on bi-Layered metasurface with F-shaped structure,” Plasmonics 12(2), 1–8 (2016).

Rep. Prog. Phys. (2)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of linearly polarized asymmetric transmission. For the forward direction incidence, (a) x-polarized wave passes through the metasurface and converts to y-polarized wave and (c) y-polarized wave is totally reflected. For the backward direction incidence, (b) y-polarized wave passes through the metasurface and converts to x-polarized wave and (d) x-polarized wave is totally reflected.
Fig. 2
Fig. 2 Schematic diagram of the preliminary unit cell structure. (a) Top layer, (b) middle layer (c) bottom layer, (d) perspective view (e) electromagnetic simulation setup. (f) Transmission coefficient of incident wave propagating in z-direction of the preliminary structure. The preliminary design of the unit cell structure is p = 10 mm, b = 10 mm, a = 4 mm. The substrate (blue part) is made of F4B with relative permittivity of 2.65, a loss tangent of 0.009 and a thickness of d = 2.5 mm. The metal (yellow part) is made of copper with conductivity σ = 5.8 × 107 S/m and the thickness 0.036 mm.
Fig. 3
Fig. 3 Schematic diagram of the topologically coding optimization process. (a) Topological coding in the middle layer, (b) the middle layer of the optimization unit cell, (c) perspective view of the optimization unit cell, (d) optimized metasurface convergence curve and (e) flowchart of the optimization process.
Fig. 4
Fig. 4 (a) Top layer, bottom layer and (b) middle layer of the fabricated sample. Simulation and experiment results of (c) cross-polarized transmission coefficient and (d) co-polarized transmission coefficient. Simulation and experiment results of (e) cross-polarized reflection coefficient and (f) co-polarized reflection coefficient. Simulation results of (g) transmission and (h) reflection coefficients of electromagnetic waves propagating along -z-direction.
Fig. 5
Fig. 5 Schematic diagram of current distributions on surface of the meta-atom at three peaks of |tyx| at (a) 5.4 GHz, (b) 10.8 GHz and (c) 14.5 GHz.
Fig. 6
Fig. 6 Simulation and experiment results of (a) asymmetric transmission effect parameter Δ and (b) PCR of incident wave propagating along the z-direction.

Tables (1)

Tables Icon

Table 1 The comparison between references and our work.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ E x r E y r ]=R[ E x i E y i ]=[ r xx r xy r yx r yy ][ E x i E y i ]
[ E x t E y t ]=T[ E x i E y i ]=[ t xx t xy t yx t yy ][ E x i E y i ]
Δ lin x = | t yx | 2 | t xy | 2 = Δ lin y
PC R x = |t yx | 2 |t yx | 2 + |t xx | 2
PC R y = |t xy | 2 |t xy | 2 + |t yy | 2
η= 1 ( F max F min ) ( F max + F min ) 2 ×100%

Metrics