Abstract

Diode pumped rare gas atoms lasers (DPRGLs) are potential candidates of the high-energy lasers, due to the advantages of high laser power and high optical conversion efficiency. In this paper, a two-stage excitation model of DPRGLs is established including gas discharge excitation and semiconductor laser pump to study energy loss mechanism and obtain total efficiency. The results of numerical simulation agree well with those of Rawlins et al.’s experiment. Through parameter optimization, the total efficiency and optical conversion efficiency reach 51.5% and 62.7% respectively, at pump intensity of 50 kW/cm2 and reduced electric field of 8 Td. Parameter optimization of two-stage excitation lasers is theoretically studied, which is significant for the DPRGLs design with high total efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of scaling of a diode longitudinally pumped metastable rare gas with a master oscillator power amplifier

Hanyuan Chen, Sichen Long, Xiahui Tang, Xiangxi Wu, Wei Wang, and Yingxiong Qin
Opt. Express 27(9) 12504-12516 (2019)

Modeling of diode pumped metastable rare gas lasers

Zining Yang, Guangqi Yu, Hongyan Wang, Qisheng Lu, and Xiaojun Xu
Opt. Express 23(11) 13823-13832 (2015)

Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser

Ben Eshel and Glen P. Perram
J. Opt. Soc. Am. B 35(1) 164-173 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
    [Crossref] [PubMed]
  2. J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
    [Crossref] [PubMed]
  3. J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
    [Crossref] [PubMed]
  4. J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
    [Crossref] [PubMed]
  5. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
    [Crossref] [PubMed]
  6. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
    [Crossref]
  7. A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
    [Crossref]
  8. Z. Yang, G. Yu, H. Wang, Q. Lu, and X. Xu, “Modeling of diode pumped metastable rare gas lasers,” Opt. Express 23(11), 13823–13832 (2015).
    [Crossref] [PubMed]
  9. J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
    [Crossref]
  10. J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
    [Crossref]
  11. B. Eshel and G. P. Perram, “Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
    [Crossref]
  12. A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
    [Crossref]
  13. P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
    [Crossref]
  14. P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
    [Crossref]
  15. D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121(20), 203301 (2017).
    [Crossref]
  16. A. Kramida, Y. Ralchenko, J. Reader and NIST ASD Team (2018), “NIST atomic spectra database,” https://physics.nist.gov/asd .
  17. G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
    [Crossref]
  18. S. F. Biagi, “Biagi database,” www.lxcat.net/Biagi .
  19. A. P. Napartovich, N. A. Dyatko, I. V. Kochetov, and A. G. Sukharev, “TRINITI database,” www.lxcat.net/TRINITI .
  20. X. M. Zhu and Y. K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
    [Crossref]
  21. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  22. P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
    [Crossref]
  23. F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
    [Crossref]
  24. A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
    [Crossref]
  25. A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
    [Crossref]

2018 (2)

B. Eshel and G. P. Perram, “Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

2017 (7)

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121(20), 203301 (2017).
[Crossref]

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
[Crossref]

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

2016 (1)

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

2015 (3)

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

Z. Yang, G. Yu, H. Wang, Q. Lu, and X. Xu, “Modeling of diode pumped metastable rare gas lasers,” Opt. Express 23(11), 13823–13832 (2015).
[Crossref] [PubMed]

2014 (2)

J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

2013 (2)

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

X. M. Zhu and Y. K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

2005 (1)

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

2004 (1)

1998 (1)

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Azyazov, V. N.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Beach, R. J.

Chernyshov, A. K.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Clark, A.

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
[Crossref]

Davis, S. J.

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

Decomps, P.

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Demyanov, A. V.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Dubinskii, M. A.

Emmons, D. J.

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121(20), 203301 (2017).
[Crossref]

Eshel, B.

Gadri, R. B.

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Galbally-Kinney, K.

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

Galbally-Kinney, K. L.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

Gao, J.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
[Crossref]

Glebov, L.

Gregorío, J.

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

Guild, E. M.

Hagelaar, G. J. M.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

Han, J.

He, Y.

Heaven, M. C.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

J. Han and M. C. Heaven, “Kinetics of optically pumped Ar metastables,” Opt. Lett. 39(22), 6541–6544 (2014).
[Crossref] [PubMed]

J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
[Crossref] [PubMed]

J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
[Crossref] [PubMed]

Hokr, B.

Hopwood, J.

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

Hopwood, J. A.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

Hoskinson, A. R.

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

Kanz, V. K.

Kochetov, I. V.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Krupke, W. F.

Lu, Q.

Massines, F.

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Mayoux, C.

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Merkle, L. D.

Mikheyev, P. A.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Moran, P. J.

Payne, S. A.

Perram, G. P.

Pitchford, L. C.

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

Pitz, G. A.

Pu, Y. K.

X. M. Zhu and Y. K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

Rabehi, A.

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Rawlins, W. T.

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref] [PubMed]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

Sanderson, C.

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

Sanderson, C. R.

Ségur, P.

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

Sun, P.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
[Crossref]

Ufimtsev, N. I.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Venus, G.

Vorontsova, E. A.

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Wang, H.

Wang, X.

J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
[Crossref]

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

Weeks, D. E.

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121(20), 203301 (2017).
[Crossref]

Xu, X.

Yang, Z.

Yu, G.

Zhang, Z.

Zhu, X. M.

X. M. Zhu and Y. K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

Zuo, D.

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
[Crossref]

J. Appl. Phys. (4)

D. J. Emmons and D. E. Weeks, “Kinetics of high pressure argon-helium pulsed gas discharge,” J. Appl. Phys. 121(20), 203301 (2017).
[Crossref]

F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,” J. Appl. Phys. 83(6), 2950–2957 (1998).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Argon metastable production in argon-helium microplasmas,” J. Appl. Phys. 119(23), 233301 (2016).
[Crossref]

A. R. Hoskinson, J. Gregorío, J. Hopwood, K. Galbally-Kinney, S. J. Davis, and W. T. Rawlins, “Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas,” J. Appl. Phys. 121(15), 153302 (2017).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (4)

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D Appl. Phys. 51(4), 045201 (2018).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge,” J. Phys. D Appl. Phys. 50(48), 485203 (2017).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

X. M. Zhu and Y. K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, E. A. Vorontsova, and V. N. Azyazov, “Pressure broadening of Ar and Kr (n + 1)s[3/2]2→(n + 1)p[5/2]3 transition in the parent gases and in He,” J. Quant. Spectrosc. Radiat. Transf. 164, 1–7 (2015).
[Crossref]

Laser Phys. Lett. (1)

J. Gao, P. Sun, X. Wang, and D. Zuo, “Modeling of a dual-wavelength pumped metastable argon laser,” Laser Phys. Lett. 14(3), 035001 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Plasma Sources Sci. Technol. (1)

G. J. M. Hagelaar and L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models,” Plasma Sources Sci. Technol. 14(4), 722–733 (2005).
[Crossref]

Proc. SPIE (2)

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 8962, 896203 (2014).
[Crossref]

P. A. Mikheyev, J. Han, A. Clark, C. Sanderson, and M. C. Heaven, “Production of Ar metastables in a dielectric barrier discharge,” Proc. SPIE 10254, 102540X (2017).
[Crossref]

Other (3)

A. Kramida, Y. Ralchenko, J. Reader and NIST ASD Team (2018), “NIST atomic spectra database,” https://physics.nist.gov/asd .

S. F. Biagi, “Biagi database,” www.lxcat.net/Biagi .

A. P. Napartovich, N. A. Dyatko, I. V. Kochetov, and A. G. Sukharev, “TRINITI database,” www.lxcat.net/TRINITI .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The energy levels and the kinetic processes for two-stage excitation systems.
Fig. 2
Fig. 2 Influence of reduced electric field and the mixture fraction on (a) gain medium density and (b) output laser intensity.
Fig. 3
Fig. 3 Influence of reduced electric field on total efficiency for different pump intensity. The red line corresponds to discharge excitation efficiency, and the others correspond to total efficiency.
Fig. 4
Fig. 4 Influence of gain length on total efficiency for different reduced electric field at pump intensity of (a) 30 kW/cm2 and (b) 50 kW/cm2. Discharge power densities are 4.9, 7.5, 16.5 kW/cm3 at E/N of 8, 10, 15 Td respectively.
Fig. 5
Fig. 5 Influence of Ar fraction on total efficiency for different pump intensity at E/N = 10 Td. Discharge power density is 7.2 kW/cm3 at Ip = 30 kW/cm2 and yAr = 5.8%.
Fig. 6
Fig. 6 Influence of Ar fraction on total efficiency (ηtot), discharge excitation efficiency (ηd), optical conversion efficiency (ηopt), effective optical conversion efficiency (ηeff) and pump absorption efficiency (ηp) at Ip = 30 kW∕cm2 and E/N = 10 Td.
Fig. 7
Fig. 7 Influence of gas pressure on total efficiency for different reduced electric field at pump intensity of (a) 30 kW/cm2 and (b) 50 kW/cm2. Under the optimal conditions at E/N = 8 Td, discharge power densities are 8.8 and 10.9 kW/cm3 at Ip of 30 and 50 kW/cm2 respectively.
Fig. 8
Fig. 8 Influence of laser reflectivity of output couple on total efficiencies for reduced electric fields at pump intensity of (a) 30 kW/cm2 and (b) 50 kW/cm2. Discharge power densities are 2.9, 6.1, 9.0 kW/cm3 at E/N of 6, 9, 11 Td respectively.

Tables (2)

Tables Icon

Table 1 Collisional relaxation processes and rate constants involved in DPRGLs model.

Tables Icon

Table 2 Einstein spontaneous emission coefficients A in DPRGLs model a .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k 0 i d = 2 e m 0 ε σ i ( ε ) f ( ε ) d ε ( i = 1 , 2 , 3 , 4 , 5 ) ,
S p = η d e l η mode l g d λ 1 h ν p I p g p ( λ ) { 1 T p 2 exp [ ( n 1 g 1 g 4 n 4 ) σ 14 b r o a d e n e d ( λ ) l g ] } { 1 + R p T p 2 exp [ ( n 1 g 1 g 4 n 4 ) σ 14 b r o a d e n e d ( λ ) l g ] } ,
σ 14 b r o a d e n e d ( λ ) = g 4 g 1 A 41 λ 41 2 8 π g L ( λ ) = g 4 g 1 A 41 λ 41 2 8 π 2 Δ v 41 2 [ ( c λ ) ( c λ 41 ) ] 2 + ( Δ v 41 2 ) 2 ,
S o u t = 1 l g I o u t h ν L R O C T L 1 R O C { exp [ ( n 3 g 3 g 1 n 1 ) σ 31 l g ] 1 } { 1 + T L 2 R L exp [ ( n 3 g 3 g 1 n 1 ) σ 31 l g ] } ,
d n 1 d t = S p + S o u t + k 21 N [ n 2 g 2 g 1 n 1 exp ( Δ E 21 k T ) ] + n 3 A 31 + n 3 k 31 N + n 4 A 41 + n 4 k 41 N + n 5 A 51 + n 5 k 51 N n 1 k Ar 2 * N 2 y Ar + k 01 d n N k 10 d n n 1 ,
d n 2 d t = n 3 A 32 + n 5 A 52 k 21 N [ n 2 g 2 g 1 n 1 exp ( Δ E 21 k T ) ] n 2 A 20 + k 02 d n N k 20 d n n 2 ,
d n 3 d t = S o u t + k 43 N [ n 4 g 4 g 3 n 3 exp ( Δ E 43 k T ) ] + k 53 N [ n 5 g 5 g 3 n 3 exp ( Δ E 53 k T ) ] n 3 A 31 n 3 k 31 N n 3 A 32 n 3 A p 10 s3 n 3 A p 10 s 2 + k 03 d n N k 30 d n n 3 ,
d n 4 d t = S p k 43 N [ n 4 g 4 g 3 n 3 exp ( Δ E 43 k T ) ] + k 54 N [ n 5 g 5 g 4 n 4 exp ( Δ E 54 k T ) ] n 4 A 41 n 4 k 41 N + k 04 d n N k 40 d n n 4 ,
d n 5 d t = k 54 N [ n 5 g 5 g 4 n 4 exp ( Δ E 54 k T ) ] k 53 N [ n 5 g 5 g 3 n 3 exp ( Δ E 53 k T ) ] n 5 A 51 n 5 k 51 N n 5 A 52 n 5 A p 8 s 2 + k 05 d n N k 50 d n n 5 ,
d I o u t d t = ( R O C R L T L 4 exp [ σ 31 ( n 3 g 3 g 1 n 1 ) 2 l g ] 1 ) I o u t c 2 l c + Δ I s p o ,
S d = i = 1 5 S d i = i = 1 5 k 0 i e n N k i 0 e n n i = n 1 k Ar 2 * N 2 y A r + n 2 A 20 + n 3 A p 10 s3 + n 3 A p 10 s 2 + n 5 A p 8 s 2 = S l o s s ,
η t o t = I o u t I p + W d × l g = η o p t 1 + W d × l g I p ,
W d = S d i Δ E i 0 η d i ( i = 1 , 2 , 3 , 4 , 5 ) = i = 1 5 S d i Δ E i 0 i = 1 5 η d i = i = 1 5 S d i Δ E i 0 η d .

Metrics