Abstract

In this paper, we experimentally investigate a rich set of Q-switching bunches in the build-up of stretched-pulse mode-locking of an erbium-doped fiber laser. Interestingly, regular clustering of periodic Q-switched mode-locking states is observed in the self-starting process. Moreover, with time-stretch spectroscopy, we record periodic pulse-to-pulse spectral evolution occurring in these turbulent and rapidly-evolving pre-mode-locking states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser

Shuqian Sun, Zhixing Lin, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 26(16) 20888-20901 (2018)

Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser

Zhenhong Wang, Zhi Wang, Yange Liu, Ruijing He, Jian Zhao, Guangdou Wang, and Guang Yang
Opt. Lett. 43(3) 478-481 (2018)

Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers

Yudong Cui and Xueming Liu
Photon. Res. 7(4) 423-430 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  2. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  3. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
    [Crossref]
  4. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  5. M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, “High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification,” Opt. Lett. 37(9), 1511–1513 (2012).
    [Crossref] [PubMed]
  6. E. J. Kelleher and J. C. Travers, “Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers,” Opt. Lett. 39(6), 1398–1401 (2014).
    [Crossref] [PubMed]
  7. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the Build-up of Femtosecond Mode-locking with Single-shot Spectroscopy at 90 MHz Frame Rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  8. J. Goodberlet, J. Wang, J. G. Fujimoto, and P. A. Schulz, “Starting dynamics of additive-pulse mode locking in the Ti:Al2O3 laser,” Opt. Lett. 15(22), 1300–1302 (1990).
    [Crossref] [PubMed]
  9. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [Crossref] [PubMed]
  10. J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
    [Crossref]
  11. A. D. Kim, J. N. Kutz, and D. J. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36(4), 465–471 (2000).
    [Crossref]
  12. B. Vodonos, A. Bekker, V. Smulakovsky, A. Gordon, O. Gat, N. K. Berger, and B. Fischer, “Experimental study of the stochastic nature of the pulsation self-starting process in passive mode locking,” Opt. Lett. 30(20), 2787–2789 (2005).
    [Crossref] [PubMed]
  13. C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
    [Crossref]
  14. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  15. H. Li, D. G. Ouzounov, and F. W. Wise, “Starting dynamics of dissipative-soliton fiber laser,” Opt. Lett. 35(14), 2403–2405 (2010).
    [Crossref] [PubMed]
  16. Ł. Zinkiewicz, F. Ozimek, and P. Wasylczyk, “Witnessing the Pulse Birth-transient Dynamics in a Passively Mode-locked Femtosecond Laser,” Laser Phys. Lett. 10(12), 125003 (2013).
    [Crossref]
  17. Z. Wang, Z. Wang, Y. G. Liu, W. Zhao, H. Zhang, S. Wang, G. Yang, and R. He, “Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser,” Opt. Express 24(13), 14709–14716 (2016).
    [Crossref] [PubMed]
  18. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
    [Crossref]
  19. M. Yan, Q. Hao, X. Shen, and H. Zeng, “Experimental study on polarization evolution locking in a stretched-pulse fiber laser,” Opt. Express 26(13), 16086–16092 (2018).
    [Crossref] [PubMed]
  20. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
    [Crossref]
  21. M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
    [Crossref] [PubMed]
  22. S. Sun, Z. Lin, W. Li, N. Zhu, and M. Li, “Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser,” Opt. Express 26(16), 20888–20901 (2018).
    [Crossref] [PubMed]
  23. M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
    [Crossref] [PubMed]
  24. M. Liu, A. P. Luo, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(17), 3912–3915 (2016).
    [Crossref] [PubMed]
  25. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Dynamics of soliton explosions in passively mode-locked fiber lasers,” J. Opt. Soc. Am. B 33(1), 46–53 (2016).
    [Crossref]
  26. Y. Yu, Z. C. Luo, J. Kang, and K. K. Y. Wong, “Mutually ignited soliton explosions in a fiber laser,” Opt. Lett. 43(17), 4132–4135 (2018).
    [Crossref] [PubMed]
  27. J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).
  28. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
    [Crossref] [PubMed]

2018 (6)

2016 (6)

2015 (2)

C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
[Crossref]

A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
[Crossref]

2014 (1)

2013 (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Ł. Zinkiewicz, F. Ozimek, and P. Wasylczyk, “Witnessing the Pulse Birth-transient Dynamics in a Passively Mode-locked Femtosecond Laser,” Laser Phys. Lett. 10(12), 125003 (2013).
[Crossref]

2012 (1)

2010 (1)

2008 (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
[Crossref] [PubMed]

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

2000 (1)

A. D. Kim, J. N. Kutz, and D. J. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36(4), 465–471 (2000).
[Crossref]

1996 (1)

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

1991 (1)

1990 (1)

Afonso, C.

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Akhmediev, N.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
[Crossref] [PubMed]

Asghari, H.

Bai, D.

Barry, N.

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Bekker, A.

Berger, N. K.

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Boyraz, O.

Brabec, T.

Broderick, N. G. R.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Churkin, D. V.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

Coddington, I.

Cui, H.

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Erkintalo, M.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Fischer, B.

French, P.

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Fujimoto, J. G.

Gat, O.

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Goodberlet, J.

Gordon, A.

Grapinet, M.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
[Crossref] [PubMed]

Grelu, P.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
[Crossref] [PubMed]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Hao, Q.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

He, R.

Herink, G.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the Build-up of Femtosecond Mode-locking with Single-shot Spectroscopy at 90 MHz Frame Rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Hu, S.

Jalali, B.

M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the Build-up of Femtosecond Mode-locking with Single-shot Spectroscopy at 90 MHz Frame Rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kang, J.

Kelleher, E. J.

Kim, A. D.

A. D. Kim, J. N. Kutz, and D. J. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36(4), 465–471 (2000).
[Crossref]

Kim, J.

C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
[Crossref]

Kim, S.

C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Krausz, F.

Kuroda, H.

Kutz, J. N.

A. D. Kim, J. N. Kutz, and D. J. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36(4), 465–471 (2000).
[Crossref]

Lee, C. G.

C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
[Crossref]

Li, H.

Li, M.

Li, W.

Lin, Z.

Liu, M.

Liu, Y. C.

Liu, Y. G.

Luo, A. P.

Luo, Z. C.

Mellish, R.

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Merolla, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Muraki, D. J.

A. D. Kim, J. N. Kutz, and D. J. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36(4), 465–471 (2000).
[Crossref]

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Newbury, N.

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Ouzounov, D. G.

Ozimek, F.

Ł. Zinkiewicz, F. Ozimek, and P. Wasylczyk, “Witnessing the Pulse Birth-transient Dynamics in a Passively Mode-locked Femtosecond Laser,” Laser Phys. Lett. 10(12), 125003 (2013).
[Crossref]

Peng, J.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Petropoulos, P.

C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
[Crossref]

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Ropers, C.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the Build-up of Femtosecond Mode-locking with Single-shot Spectroscopy at 90 MHz Frame Rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Ru, Q.

Runge, A. F. J.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Schulz, P. A.

Shen, X.

Siegel, J.

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Smulakovsky, V.

Solis, J.

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Solli, D. R.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the Build-up of Femtosecond Mode-locking with Single-shot Spectroscopy at 90 MHz Frame Rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sorokina, M.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

Soto-Crespo, J. M.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
[Crossref] [PubMed]

Spielmann, C.

Sugavanam, S.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

Sun, S.

Suzuki, M.

Swann, W.

Tarasov, N.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

Travers, J. C.

Trinh, P.

Turitsyn, S. K.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

Vodonos, B.

Wang, J.

Wang, S.

Wang, Z.

Wasylczyk, P.

Ł. Zinkiewicz, F. Ozimek, and P. Wasylczyk, “Witnessing the Pulse Birth-transient Dynamics in a Passively Mode-locked Femtosecond Laser,” Laser Phys. Lett. 10(12), 125003 (2013).
[Crossref]

Wise, F. W.

H. Li, D. G. Ouzounov, and F. W. Wise, “Starting dynamics of dissipative-soliton fiber laser,” Opt. Lett. 35(14), 2403–2405 (2010).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Wong, K. K. Y.

Xu, W. C.

Yan, M.

Yan, Y. R.

Yang, G.

Yang, K.

Yu, Y.

Zeng, H.

Zhang, H.

Zhao, W.

Zhou, H.

Zhou, Q.

Zhu, N.

Zinkiewicz, L.

Ł. Zinkiewicz, F. Ozimek, and P. Wasylczyk, “Witnessing the Pulse Birth-transient Dynamics in a Passively Mode-locked Femtosecond Laser,” Laser Phys. Lett. 10(12), 125003 (2013).
[Crossref]

Commun. Phys. (1)

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation modelocked fibre lasers,” Commun. Phys. 1(20), 1–8 (2018).

IEEE J. Quantum Electron. (1)

A. D. Kim, J. N. Kutz, and D. J. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36(4), 465–471 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Laser Phys. Lett. (1)

Ł. Zinkiewicz, F. Ozimek, and P. Wasylczyk, “Witnessing the Pulse Birth-transient Dynamics in a Passively Mode-locked Femtosecond Laser,” Laser Phys. Lett. 10(12), 125003 (2013).
[Crossref]

Nat. Photonics (3)

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the Build-up of Femtosecond Mode-locking with Single-shot Spectroscopy at 90 MHz Frame Rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Opt. Commun. (2)

C. G. Lee, J. Kim, S. Kim, and P. Petropoulos, “Transient response of a passively mode-locked Er-doped fiber ring laser,” Opt. Commun. 356, 161–165 (2015).
[Crossref]

J. Solis, J. Siegel, C. Afonso, N. Barry, R. Mellish, and P. French, “Experimental Study of a Self-starting Kerr-lens Mode-locked Titanium-doped Sapphire Laser,” Opt. Commun. 123(4-6), 547–552 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (10)

Y. Yu, Z. C. Luo, J. Kang, and K. K. Y. Wong, “Mutually ignited soliton explosions in a fiber laser,” Opt. Lett. 43(17), 4132–4135 (2018).
[Crossref] [PubMed]

M. Liu, A. P. Luo, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(17), 3912–3915 (2016).
[Crossref] [PubMed]

M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
[Crossref] [PubMed]

M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
[Crossref] [PubMed]

J. Goodberlet, J. Wang, J. G. Fujimoto, and P. A. Schulz, “Starting dynamics of additive-pulse mode locking in the Ti:Al2O3 laser,” Opt. Lett. 15(22), 1300–1302 (1990).
[Crossref] [PubMed]

F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
[Crossref] [PubMed]

B. Vodonos, A. Bekker, V. Smulakovsky, A. Gordon, O. Gat, N. K. Berger, and B. Fischer, “Experimental study of the stochastic nature of the pulsation self-starting process in passive mode locking,” Opt. Lett. 30(20), 2787–2789 (2005).
[Crossref] [PubMed]

H. Li, D. G. Ouzounov, and F. W. Wise, “Starting dynamics of dissipative-soliton fiber laser,” Opt. Lett. 35(14), 2403–2405 (2010).
[Crossref] [PubMed]

M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, “High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification,” Opt. Lett. 37(9), 1511–1513 (2012).
[Crossref] [PubMed]

E. J. Kelleher and J. C. Travers, “Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers,” Opt. Lett. 39(6), 1398–1401 (2014).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 2), 066612 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup. AOM, acoustic-optic modulator; LD, laser diode; SMF, single mode fiber; PD, photo-detector; FPD, fast photo-detector (40-GHz bandwidth); OSA, optical spectrum analyzer; TS-DFT, time-stretch dispersive Fourier transform. (b) Spectra measured by OSA and TS-DFT.
Fig. 2
Fig. 2 Time traces of the fiber laser. (a) Photo-detection signals of the modulated pump (yellow) and the fiber laser output (blue). The rising time of the square wave is ~8 ns. (b), (c) and (d) pulse trains in randomly selected transient starting-up processes of the fiber laser. The mode-locked pulse trains are marked by the red arrows. (e) Comparison of time-stretched pulses at the final stages of (b), (c) and (d). Similar to Fig. 1(b), the temporal profiles of these time-stretched pulses reflect their spectral structures.
Fig. 3
Fig. 3 (a) Statistic diagram of the number of clusters occurring in start-up processes. (b) Statistic diagram of the time duration of a cluster and the gap between two successive clusters.
Fig. 4
Fig. 4 (a) The time trace of the pulse cluster marked (yellow dash box) in Fig. 2(b). (b) Statistic data of the time duration (t1) of a Q-switching hill and the time separation (t2) between the two. For this measurement, we analyze 40 pulse clusters and the average number of Q-switching hills in each cluster is about 7. (c) Zoom-in of the last part in (a). (d) The rising and (e) the falling edges of the last Q-switched mode-locking state.
Fig. 5
Fig. 5 (a) Experimentally measured single-shot spectra of the last 300 round trips displayed in Fig. 4(e). (b) Examples of periodically evolving spectra. The spectra in Fig. 5(b) are color coded and labeled with the corresponding numbers of the round trips.

Metrics