Abstract

Conventional holographic stereogram (HS) can be generated through fast Fourier transforming parallax images into hogels. Conventional HS uses multiple plane waves to reconstruct 3D images with low resolution and is similar to the principle of depth priority integral imaging (II). We proposed the concept of resolution priority HS for the first time, which is based on the principle of resolution priority II, by adding a quadratic phase term on the conventional Fourier transform. In the proposed resolution priority HS, the resolution of reconstructed 3D images is much better than conventional HS, but the depth range is limited. To enhance the depth range, a multi-plane technique was used to present multiple central depth planes simultaneously. The proposed resolution priority HS with high resolution and enhanced depth range was verified by both simulation and optical experiment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging

Dong-Hak Shin, Byung-Gook Lee, and Joon-Jae Lee
Opt. Express 16(21) 16294-16304 (2008)

Occlusion-removed scheme using depth-reversed method in computational integral imaging

Miao Zhang, Yongri Piao, and Eun-Soo Kim
Appl. Opt. 49(14) 2571-2580 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
    [Crossref]
  2. T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
    [Crossref]
  3. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  4. J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
    [Crossref]
  5. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9(2), 471–475 (1970).
    [Crossref] [PubMed]
  6. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [Crossref] [PubMed]
  7. H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
    [Crossref]
  8. F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
    [Crossref] [PubMed]
  9. Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
    [Crossref] [PubMed]
  10. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
    [Crossref]
  11. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]
  12. Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903 (2010).
  13. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
    [Crossref] [PubMed]
  14. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  15. K. Wakunami, M. Yamaguchi, and B. Javidi, “High-resolution three-dimensional holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37(24), 5103–5105 (2012).
    [Crossref] [PubMed]
  16. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52(1), A201–A209 (2013).
    [Crossref] [PubMed]
  17. Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
    [Crossref]
  18. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  19. P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, “Generation of patterned-phase-only holograms (PPOHs),” Opt. Express 25(8), 9088–9093 (2017).
    [Crossref] [PubMed]
  20. W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
    [Crossref] [PubMed]
  21. Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res.,  1, 17–27 (2010).
  22. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46(18), 3766–3773 (2007).
    [Crossref] [PubMed]
  23. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  24. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Layered holographic stereogram based on inverse Fresnel diffraction,” Appl. Opt. 55(3), A154–A159 (2016).
    [Crossref] [PubMed]
  25. Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table,” Opt. Express 26(10), 13322–13330 (2018).
    [Crossref] [PubMed]
  26. J. Jia, J. Liu, G. Jin, and Y. Wang, “Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling,” Appl. Opt. 53(27), 6287–6293 (2014).
    [Crossref] [PubMed]
  27. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [Crossref] [PubMed]
  28. A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
    [Crossref] [PubMed]

2018 (3)

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table,” Opt. Express 26(10), 13322–13330 (2018).
[Crossref] [PubMed]

2017 (1)

2016 (3)

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Layered holographic stereogram based on inverse Fresnel diffraction,” Appl. Opt. 55(3), A154–A159 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (1)

2013 (2)

2012 (2)

2011 (1)

2010 (2)

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res.,  1, 17–27 (2010).

2008 (1)

2007 (1)

2004 (1)

1993 (1)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

1976 (1)

1970 (1)

1968 (1)

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

Berry, D. H.

Blinder, D.

Brady, D. J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Cang, J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Cao, L.

Chen, H. S.

Chen, R. S.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Cho, S.-W.

Choi, H.

Chow, Y. T.

Feng, Q.

Feng, Q. B.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

George, N.

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Hong, K.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res.,  1, 17–27 (2010).

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Hu, Z. A.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Ichihashi, Y.

Ichikawa, T.

Ito, T.

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

Jang, J.-S.

Javidi, B.

Jia, J.

Jin, F.

Jin, G.

Kakue, T.

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

Kang, H.

Kim, J.

Kim, Y.

King, M. C.

Kong, D.

Kurita, T.

Lee, B.

Lin, Y. H.

Liu, J.

Lv, G.

Lv, G. Q.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Martínez-Corral, M.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Martínez-Cuenca, R.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

McCrickerd, J. T.

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

Ming, H.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table,” Opt. Express 26(10), 13322–13330 (2018).
[Crossref] [PubMed]

Molina-Martian, A.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Munteanu, A.

Navarro, H.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Noll, A. M.

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Oi, R.

Park, G.

Poon, T. C.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

Poon, T.-C.

Saavedra, G.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Sakamoto, Y.

Schelkens, P.

Senoh, T.

Shen, X.

Shimobaba, T.

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

Symeonidou, A.

Tsang, P. W. M.

P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, “Generation of patterned-phase-only holograms (PPOHs),” Opt. Express 25(8), 9088–9093 (2017).
[Crossref] [PubMed]

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

Wakunami, K.

Wang, A.

Wang, A. T.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Wang, Y.

Wang, Y. J.

Wang, Z.

Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table,” Opt. Express 26(10), 13322–13330 (2018).
[Crossref] [PubMed]

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Xiao, X.

Yamaguchi, K.

Yamaguchi, M.

Yamaguchi, T.

Yamamoto, K.

Yamashita, H.

Yatagai, T.

Yoshikawa, H.

Zhang, H.

Zhang, W.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Zhang, X.

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

Zhao, Y.

3D Res. (1)

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res.,  1, 17–27 (2010).

Appl. Opt. (7)

Appl. Phys. Lett. (2)

Z. Wang, R. S. Chen, X. Zhang, G. Q. Lv, Q. B. Feng, Z. A. Hu, H. Ming, and A. T. Wang, “Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique,” Appl. Phys. Lett. 113(22), 221109 (2018).
[Crossref]

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

IEEE Trans. Industr. Inform. (2)

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Industr. Inform. 12(3), 886–901 (2016).
[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implementations on computer holography,” IEEE Trans. Industr. Inform. 12(4), 1611–1622 (2016).
[Crossref]

J. Disp. Technol. (1)

H. Navarro, R. Martínez-Cuenca, A. Molina-Martian, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Opt. Express (8)

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref] [PubMed]

P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, “Generation of patterned-phase-only holograms (PPOHs),” Opt. Express 25(8), 9088–9093 (2017).
[Crossref] [PubMed]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
[Crossref] [PubMed]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
[Crossref] [PubMed]

Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table,” Opt. Express 26(10), 13322–13330 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-Image-Free Holography: A Compressive Sensing Approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–32 (1993).
[Crossref]

Other (2)

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903 (2010).

Supplementary Material (1)

NameDescription
» Visualization 1       optical reconstruction of proposed resolution priority holographic stereogram

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Principle of holographic stereogram.
Fig. 2
Fig. 2 (a) Wavefront reconstruction and display principle of conventional HS. (b) Wavefront reconstruction and display principle of DPII.
Fig. 3
Fig. 3 Conversion process from DPII to HS through FFT [9].
Fig. 4
Fig. 4 (a) Wavefront reconstruction and display principle of RPII. (b) Wavefront reconstruction and display principle of proposed RPHS.
Fig. 5
Fig. 5 Conversion process from RPII to RPHS by adding a quadratic phase term on the conventional FFT.
Fig. 6
Fig. 6 (a) Synthesized EIA of one point. Phase profile of (b) conventional HS and (c) proposed RPHS and (d) Fresnel hologram. Numerical reconstructed results of the point in (e) conventional HS and (f) proposed RPHS. (g) The intensity profile along the white line in (e). (h) The intensity profile along the white line in (f).
Fig. 7
Fig. 7 (a) The bee model used in simulation. (b) The captured EIA of the bee model. (c) and (d) reconstructions of conventional HS; (e) and (f) reconstructions of proposed RPHS.
Fig. 8
Fig. 8 (a) and (b) Optical reconstruction results of conventional HS captured from different directions. (c) and (d) Optical reconstruction results of proposed RPHS captured from different directions (see Visualization 1).
Fig. 9
Fig. 9 Principle of depth range limit in RPII.
Fig. 10
Fig. 10 (a) Computational II for three letters. (b) The synthesized EIA of the three letters.
Fig. 11
Fig. 11 (a) and (b) and (c) Numerically reconstructed image focused on different letters without multi-plane technique. (d) and (e) and (f) Numerically reconstructed image focused on different letters with multi-plane technique. (g) and (h) and (i) Separately synthesized EIA of different letters.
Fig. 12
Fig. 12 Optically reconstructed images focused on different letters (a) without multi-plane technique and (b) with multi-plane technique.
Fig. 13
Fig. 13 (a) Distances between each object and the virtual camera array built in the 3ds Max software. (b) Front view of the three objects. (c-e) The three EIAs of the three 3D objects without mutual occlusion. (f) The mask generated from (c). (g) The mask generated from (d). (h) The EIA of the middle object with occlusion. (i) The EIA of the rear object with occlusion.
Fig. 14
Fig. 14 Optically reconstructed images focused on different objects (a) without multi-plane technique and (b) with multi-plane technique. (c) different perspectives of the 3D images.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H(u,v)= 1 jλf I(x,y)exp[ j 2π λf (xu+yv) ] dxdy
f nyq = L 2p
H(u,v)= Aexp[ jπ λf (1 g f )( u 2 + v 2 ) ] jλf I(x,y)exp[ j 2π λf (xu+yv) ] dxdy
H(u,v)=exp[ jπ λf (1 g f )( u 2 + v 2 ) ]·A( u λf , v λf ), A( f x , f y )=FFT[ I(x,y) ]
1 2Δp = NΔp 2λf λf=NΔ p 2
I(u,v)=2Re[H(u,v) r (u,v)]+C
Δ Z m = 2l P I φ = 2 l 2 P D gφ
M(x,y)={ 0 E(x,y)>0 1 E(x,y)=0

Metrics