Abstract

A high-energy, single-frequency, injection-seeded, Q-switched Er:YAG laser oscillating at 1645 nm is demonstrated. For obtaining high output energy, a double-crystals-end-pumping architecture is utilized. The maximum output energies of single-frequency pulses are 12.84 mJ, 16.87 mJ, and 20.3 mJ at pulse repetition rates of 500 Hz, 300 Hz and 200 Hz, respectively. Correspondingly, the pulse widths are 162 ns, 125 ns, and 110 ns, respectively. The half-width of the pulse spectrum at the pulse repetition rate of 200 Hz is 4.59 MHz, measured by using the heterodyne technique, which is 1.14 times transform limited. To the best of our knowledge, 20.3 mJ is the highest energy obtained from a single-frequency, injection-seeded Er:YAG laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-repetition rate, single-frequency laser with a double Er:YAG ceramics ring cavity

Meng Zhang, Chunqing Gao, Qing Wang, Mingwei Gao, Shuai Huang, and Kaixin Wang
Opt. Express 27(16) 23197-23203 (2019)

Single-frequency, injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91μm fiber-coupled LD

Yixuan Zhang, Chunqing Gao, Qing Wang, Quanxin Na, Meng Zhang, Qing Ye, Mingwei Gao, and Jian Zhang
Opt. Express 24(24) 27805-27811 (2016)

Single-frequency operation of diode-pumped 2 μm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser

Chunqing Gao, Zhifeng Lin, Mingwei Gao, Yunshan Zhang, Lingni Zhu, Ran Wang, and Yan Zheng
Appl. Opt. 49(15) 2841-2844 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
    [Crossref]
  2. S. W. Henderson and S. M. Hannon, “Advanced coherent lidar system for wind measurements,” Proc. SPIE 5887, 58870I (2005).
    [Crossref]
  3. R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Efficient Diffraction-Limited SLM Eyesafe 1617 nm Er:YAG MOPA with 1.1 ns Pulse width” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WE2.
  4. J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
    [Crossref]
  5. R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
    [Crossref]
  6. Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
    [Crossref] [PubMed]
  7. R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).
  8. Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
    [Crossref]
  9. B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
    [Crossref]
  10. C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
    [Crossref]
  11. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
    [Crossref]
  12. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
    [Crossref]
  13. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  14. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and single-frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm,” Opt. Express 16(24), 19427–19433 (2008).
    [Crossref] [PubMed]
  15. M. Wang, J. Meng, X. Hou, and W. Chen, “In-band pumped polarized, narrow-linewidth Er:YAG laser at 1645 nm,” Appl. Opt. 53(30), 7153–7156 (2014).
    [Crossref] [PubMed]
  16. P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
    [Crossref] [PubMed]
  17. Z. Yu, M. Wang, X. Hou, and W. Chen, “High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm,” Appl. Opt. 53(34), 8032–8035 (2014).
    [Crossref] [PubMed]
  18. Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
    [Crossref]
  19. I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs 1532-nm CW pumping case,” Proc. SPIE 7325, 732505 (2009).
    [Crossref]
  20. G. J. Koch, J. P. Deyst, and M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18(15), 1235–1237 (1993).
    [Crossref] [PubMed]
  21. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [Crossref] [PubMed]
  22. J. C. Barnes and N. P. Barnes, “Injection-Seeding I: Theory,” Quantum Electron. 29(10), 2670–2683 (1993).
    [Crossref]

2018 (1)

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

2016 (1)

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

2015 (2)

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
[Crossref] [PubMed]

2014 (4)

Z. Yu, M. Wang, X. Hou, and W. Chen, “High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm,” Appl. Opt. 53(34), 8032–8035 (2014).
[Crossref] [PubMed]

M. Wang, J. Meng, X. Hou, and W. Chen, “In-band pumped polarized, narrow-linewidth Er:YAG laser at 1645 nm,” Appl. Opt. 53(30), 7153–7156 (2014).
[Crossref] [PubMed]

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

2013 (1)

2011 (1)

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

2009 (1)

I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs 1532-nm CW pumping case,” Proc. SPIE 7325, 732505 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

2006 (1)

2005 (4)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
[Crossref]

S. W. Henderson and S. M. Hannon, “Advanced coherent lidar system for wind measurements,” Proc. SPIE 5887, 58870I (2005).
[Crossref]

1993 (2)

G. J. Koch, J. P. Deyst, and M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18(15), 1235–1237 (1993).
[Crossref] [PubMed]

J. C. Barnes and N. P. Barnes, “Injection-Seeding I: Theory,” Quantum Electron. 29(10), 2670–2683 (1993).
[Crossref]

1991 (1)

Alpers, M.

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

Barnes, J. C.

J. C. Barnes and N. P. Barnes, “Injection-Seeding I: Theory,” Quantum Electron. 29(10), 2670–2683 (1993).
[Crossref]

Barnes, N. P.

J. C. Barnes and N. P. Barnes, “Injection-Seeding I: Theory,” Quantum Electron. 29(10), 2670–2683 (1993).
[Crossref]

Buck, J.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Chen, W.

Chen, W. B.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Clarkson, W. A.

Dai, T. Y.

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Deng, Y.

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Deniel, C.

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

Deyst, J. P.

Duan, X. M.

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Dubinskii, M.

I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs 1532-nm CW pumping case,” Proc. SPIE 7325, 732505 (2009).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[Crossref]

Ehret, G.

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

Fedorov, V. V.

Flamant, P.

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

Gao, C.

Gao, C. Q.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

Gao, M.

Gao, M. W.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

Gapontsev, D. V.

Gapontsev, V. P.

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

Gatt, P.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
[Crossref]

Hale, C. P.

Hannon, S. M.

S. W. Henderson and S. M. Hannon, “Advanced coherent lidar system for wind measurements,” Proc. SPIE 5887, 58870I (2005).
[Crossref]

Hartman, R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
[Crossref]

Henderson, S. W.

Hou, X.

Huang, B.

Huffaker, A. V.

Ju, Y. L.

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Kavaya, M. J.

Koch, G. J.

Krause, B.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Kudryashov, I.

I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs 1532-nm CW pumping case,” Proc. SPIE 7325, 732505 (2009).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[Crossref]

Liu, J.

Magee, J. R.

Malm, A.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Malm, A. I. R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
[Crossref]

Meng, J.

Millet, B.

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

Mirov, S. B.

Moskalev, I. S.

Na, Q. X.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

Platonov, N. S.

Sahu, J. K.

Shen, D. Y.

Shi, Y.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

Stephan, C.

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

Stoneman, R. C.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
[Crossref]

Storm, M. E.

Tang, P.

Ter-Gabrielyan, N.

I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs 1532-nm CW pumping case,” Proc. SPIE 7325, 732505 (2009).
[Crossref]

Tiemann, B.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Wang, M.

Wang, M. J.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Wang, Q.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

Wang, R.

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[Crossref] [PubMed]

Wang, S.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

Wang, Y. Z.

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

Wen, S.

Xu, C.

Yao, B. Q.

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Ye, Q.

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[Crossref] [PubMed]

Yu, X.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Yu, Z.

Yu, Z. Z.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Zakel, A.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Zhao, C.

Zheng, Y.

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Appl. Phys. Lett. (2)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005).
[Crossref]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett. 87(12), 121101 (2005).
[Crossref]

Laser Phys. (1)

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er:YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Laser Phys. Lett. (1)

C. Q. Gao, Y. Shi, Q. Ye, S. Wang, Q. X. Na, Q. Wang, and M. W. Gao, “10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD,” Laser Phys. Lett. 15(2), 025003 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (6)

R. Wang, Q. Ye, Y. Zheng, M. W. Gao, and C. Q. Gao, “Single frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser,” Proc. SPIE 8959, 89590F (2014).

C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN – a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011).
[Crossref]

S. W. Henderson and S. M. Hannon, “Advanced coherent lidar system for wind measurements,” Proc. SPIE 5887, 58870I (2005).
[Crossref]

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent Laser Radar Using Eyesafe YAG Laser Transmitters,” Proc. SPIE 5791, 167 (2005).
[Crossref]

I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs 1532-nm CW pumping case,” Proc. SPIE 7325, 732505 (2009).
[Crossref]

Quantum Electron. (2)

B. Q. Yao, Y. Deng, T. Y. Dai, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator,” Quantum Electron. 45(8), 709–712 (2015).
[Crossref]

J. C. Barnes and N. P. Barnes, “Injection-Seeding I: Theory,” Quantum Electron. 29(10), 2670–2683 (1993).
[Crossref]

Other (1)

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Efficient Diffraction-Limited SLM Eyesafe 1617 nm Er:YAG MOPA with 1.1 ns Pulse width” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WE2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of injection-seeded single-frequency Q-switched Er:YAG laser.
Fig. 2
Fig. 2 (a) Output energy versus the incident pump power at different pulse repetition rates (b) Pulse width versus the incident pump power at different pulse repetition rates
Fig. 3
Fig. 3 (a) Output energy of the single-frequency Er:YAG laser versus the incident pump power at different pulse repetition rates (b) Pulse width of the single-frequency Er:YAG laser versus the incident pump power at different pulse repetition rates
Fig. 4
Fig. 4 The pulse temporal profiles of the Er:YAG laser without injection-seeded (a) and with injection-seeded (b) at PRF of 200 Hz.
Fig. 5
Fig. 5 The build-up time of the laser with and without injection-seeded versus incident pump power.
Fig. 6
Fig. 6 (a) Pulse waveform and beating signal of the single-frequency pulse; (b) FFT spectrum of heterodyne beating signal between the seed laser and the slave laser.
Fig. 7
Fig. 7 The fluctuation of the single-frequency injection-seeded Q-switched laser at the highest output level at the PRF of 200Hz.
Fig. 8
Fig. 8 Beam quality of the single-frequency injection seeded Q-switched Er:YAG laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C c = + + E 1 * E 2 d x d y + + E 1 * E 1 d x d y + + E 2 * E 2 d x d y
C c = 2 1 + cos 2 θ exp ( π 2 ω 1 2 sin 2 θ λ 2 ( 1 + cos 2 θ ) )
C c = exp ( θ 2 2 θ 1 2 )

Metrics