Abstract

Imaging of the phase output of a lock-in amplifier in mid-infrared photothermal vibrational microscopy is demonstrated for the first time in combination with nonlinear demodulation. In general, thermal blurring and heat transport phenomena contribute to the resolution and sensitivity of mid-infrared photothermal imaging. For heterogeneous samples with multiple absorbing features, if imaged in a spectral regime of comparable absorption with their embedding medium, it is demonstrated that differentiation with high contrast is achieved in complementary imaging of the phase signal obtained from a lock-in amplifier compared to standard imaging of the photothermal amplitude signal. Specifically, by investigating the relative contribution of the out-of-phase lock-in signal, information based on changes in the rate of heat transport can be extracted, and inhomogeneities in the thermal diffusion properties across the sample plane can be mapped with high sensitivity and sub-diffraction limited resolution. Under these imaging conditions, wavenumber regimes can be identified in which the thermal diffusion contributions are minimized and an enhancement of the spatial resolution beyond the diffraction limited spot size of the probe beam in the corresponding phase images is achieved. By combining relative diffusive phase imaging with nonlinear demodulation at the second harmonic, it is demonstrated that 1-μm-size melamine beads embedded in a thin layer of 4-octyl-4’-cyanobiphenyl (8CB) liquid crystal can be detected with a 1.3-μm spatial full-width at half-maximum (FWHM) resolution. Thus, imaging with a resolving power that exceeds the probe diffraction limited spot size by a factor of 2.5 is presented, which paves the route towards super-resolution, label-free imaging in the mid-infrared.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi
Opt. Express 22(16) 18833-18842 (2014)

Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution

M. Kaucikas, J. Barber, and J. J. Van Thor
Opt. Express 21(7) 8357-8370 (2013)

Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues

Jun Miyazaki, Hiromichi Tsurui, and Takayoshi Kobayashi
Biomed. Opt. Express 6(9) 3217-3224 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Bialkowski, “Photothermal spectroscopy methods for chemical analysis,” (Wiley, 1996).
  2. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [Crossref] [PubMed]
  3. M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
    [Crossref] [PubMed]
  4. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
    [Crossref]
  5. M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
    [Crossref] [PubMed]
  6. V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
    [Crossref]
  7. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [Crossref] [PubMed]
  8. J. M. Tucker-Schwartz, M. Lapierre-Landry, C. A. Patil, and M. C. Skala, “Photothermal optical lock-in optical coherence tomography for in vivo imaging,” Biomed. Opt. Express 6(6), 2268–2282 (2015).
    [Crossref] [PubMed]
  9. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
    [Crossref] [PubMed]
  10. J. Miyazaki and T. Kobayahsi, “Photothermal microscopy for high sensitivity and high resolution absorption contrast imaging of biological tissues,” Photonics 4(4), 32 (2017).
    [Crossref]
  11. A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
    [Crossref] [PubMed]
  12. A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
    [Crossref] [PubMed]
  13. P. Samolis and M. Y. Sander, “Mid-infrared photothermal spectroscopy with phase analysis,” in Ultrafast Nonlinear Imaging and Spectroscopy VI (International Society for Optics and Photonics, 2018), Vol. 10753, p. 107530I.
  14. A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
    [Crossref] [PubMed]
  15. R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
    [Crossref]
  16. Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
    [Crossref] [PubMed]
  17. D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
    [Crossref] [PubMed]
  18. R. M. Sullenberger, S. M. Redmond, D. Crompton, A. M. Stolyarov, and W. D. Herzog, “Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering,” Opt. Lett. 42(2), 203–206 (2017).
    [Crossref] [PubMed]
  19. R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
    [Crossref]
  20. M. Pfeifer, A. Ruf, and P. Fischer, “Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy,” Opt. Express 21(22), 25643–25654 (2013).
    [Crossref] [PubMed]
  21. R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
    [Crossref] [PubMed]
  22. L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
    [Crossref] [PubMed]
  23. M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 191(4223), 183–185 (1976).
    [Crossref] [PubMed]
  24. C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
    [Crossref] [PubMed]
  25. D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
    [Crossref] [PubMed]
  26. W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
    [Crossref] [PubMed]
  27. A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
    [Crossref] [PubMed]
  28. Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
    [Crossref]
  29. O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
    [Crossref] [PubMed]
  30. O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
    [Crossref] [PubMed]
  31. J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Label-free imaging of melanoma with nonlinear photothermal microscopy,” Opt. Lett. 40(7), 1141–1144 (2015).
    [Crossref] [PubMed]
  32. J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source,” Opt. Express 23(8), 9762–9771 (2015).
    [Crossref] [PubMed]
  33. J. Zhao, J. Shen, and C. Hu, “Continuous-wave photothermal deflection spectroscopy with fundamental and harmonic responses,” Opt. Lett. 27(20), 1755–1757 (2002).
    [Crossref] [PubMed]
  34. Z. Zhang, Y. Shi, S. Yang, and D. Xing, “Subdiffraction-limited second harmonic photoacoustic microscopy based on nonlinear thermal diffusion,” Opt. Lett. 43(10), 2336–2339 (2018).
    [Crossref] [PubMed]
  35. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
    [Crossref] [PubMed]
  36. M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
    [Crossref]
  37. A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivities studied by single-particle photothermal deflection microscopy,” ACS Photonics 4(3), 681–687 (2017).
    [Crossref]
  38. A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivity measured using a single plasmonic nanoparticle,” Phys. Chem. Chem. Phys. 17(32), 20868–20872 (2015).
    [Crossref] [PubMed]
  39. S. Pham Tu Quoc, G. Cheymol, and A. Semerok, “New contactless method for thermal diffusivity measurements using modulated photothermal radiometry,” Rev. Sci. Instrum. 85(5), 054903 (2014).
    [Crossref] [PubMed]
  40. M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
    [Crossref]
  41. K. Strzałkowski, M. Streza, and M. Pawlak, “Lock-in thermography versus PPE calorimetry for accurate measurements of thermophysical properties of solid samples: A comparative study,” Measurement 64, 64–70 (2015).
    [Crossref]
  42. M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
    [Crossref]
  43. S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
    [Crossref]
  44. A. Mertiri, “Mid-infrared photothermal hyperspectral imaging of biomolecular systems,” Boston University (2014).
  45. A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
    [Crossref]

2018 (1)

2017 (8)

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivities studied by single-particle photothermal deflection microscopy,” ACS Photonics 4(3), 681–687 (2017).
[Crossref]

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
[Crossref] [PubMed]

J. Miyazaki and T. Kobayahsi, “Photothermal microscopy for high sensitivity and high resolution absorption contrast imaging of biological tissues,” Photonics 4(4), 32 (2017).
[Crossref]

A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
[Crossref] [PubMed]

Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
[Crossref] [PubMed]

R. M. Sullenberger, S. M. Redmond, D. Crompton, A. M. Stolyarov, and W. D. Herzog, “Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering,” Opt. Lett. 42(2), 203–206 (2017).
[Crossref] [PubMed]

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

2016 (2)

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
[Crossref] [PubMed]

2015 (9)

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, M. Lapierre-Landry, C. A. Patil, and M. C. Skala, “Photothermal optical lock-in optical coherence tomography for in vivo imaging,” Biomed. Opt. Express 6(6), 2268–2282 (2015).
[Crossref] [PubMed]

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivity measured using a single plasmonic nanoparticle,” Phys. Chem. Chem. Phys. 17(32), 20868–20872 (2015).
[Crossref] [PubMed]

O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
[Crossref] [PubMed]

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Label-free imaging of melanoma with nonlinear photothermal microscopy,” Opt. Lett. 40(7), 1141–1144 (2015).
[Crossref] [PubMed]

J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source,” Opt. Express 23(8), 9762–9771 (2015).
[Crossref] [PubMed]

K. Strzałkowski, M. Streza, and M. Pawlak, “Lock-in thermography versus PPE calorimetry for accurate measurements of thermophysical properties of solid samples: A comparative study,” Measurement 64, 64–70 (2015).
[Crossref]

2014 (5)

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
[Crossref]

S. Pham Tu Quoc, G. Cheymol, and A. Semerok, “New contactless method for thermal diffusivity measurements using modulated photothermal radiometry,” Rev. Sci. Instrum. 85(5), 054903 (2014).
[Crossref] [PubMed]

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (5)

R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
[Crossref] [PubMed]

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
[Crossref] [PubMed]

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
[Crossref]

2011 (1)

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
[Crossref] [PubMed]

2008 (2)

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[Crossref] [PubMed]

2006 (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

2005 (1)

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

2002 (2)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

J. Zhao, J. Shen, and C. Hu, “Continuous-wave photothermal deflection spectroscopy with fundamental and harmonic responses,” Opt. Lett. 27(20), 1755–1757 (2002).
[Crossref] [PubMed]

1999 (1)

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

1986 (1)

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

1976 (1)

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 191(4223), 183–185 (1976).
[Crossref] [PubMed]

Adler, D. C.

Afridi, H. I.

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Albrecht, A. C.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 191(4223), 183–185 (1976).
[Crossref] [PubMed]

Aleshire, K.

Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
[Crossref] [PubMed]

Altug, H.

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

Berciaud, S.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

Berclaz, C.

Bhargava, R.

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
[Crossref] [PubMed]

Bialkowski, S. E.

S. E. Bialkowski, “Photothermal spectroscopy methods for chemical analysis,” (Wiley, 1996).

Bindra, S.

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

Biris, A. S.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Blab, G. A.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

Bocchio, N. L.

Bouwens, A.

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Braun, M.

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
[Crossref]

Cai, Y.-Y.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Chang, W.-S.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

Chauhan, V.

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

Cheng, J.-X.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Cheshnovsky, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
[Crossref] [PubMed]

Cheymol, G.

S. Pham Tu Quoc, G. Cheymol, and A. Semerok, “New contactless method for thermal diffusivity measurements using modulated photothermal radiometry,” Rev. Sci. Instrum. 85(5), 054903 (2014).
[Crossref] [PubMed]

Chirtoc, M.

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

Cichos, F.

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivities studied by single-particle photothermal deflection microscopy,” ACS Photonics 4(3), 681–687 (2017).
[Crossref]

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivity measured using a single plasmonic nanoparticle,” Phys. Chem. Chem. Phys. 17(32), 20868–20872 (2015).
[Crossref] [PubMed]

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
[Crossref]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[Crossref] [PubMed]

Cognet, L.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

Crompton, D.

Depriester, M.

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

Dervishi, E.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Eakins, G.

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Emmadi, R.

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

Erramilli, S.

A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
[Crossref] [PubMed]

A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
[Crossref] [PubMed]

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

Farahi, R. H.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
[Crossref]

Fischer, P.

Fujimoto, J. G.

Furstenberg, R.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Gibson, M. I.

Goulley, J.

Haglund, R. F.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Hang, N.

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

Hartland, G. V.

Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
[Crossref] [PubMed]

He, J.

Heber, A.

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivities studied by single-particle photothermal deflection microscopy,” ACS Photonics 4(3), 681–687 (2017).
[Crossref]

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivity measured using a single plasmonic nanoparticle,” Phys. Chem. Chem. Phys. 17(32), 20868–20872 (2015).
[Crossref] [PubMed]

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
[Crossref]

Herzog, W. D.

Hoggard, A.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Hong, M. K.

A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
[Crossref] [PubMed]

A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
[Crossref] [PubMed]

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

Hu, C.

Huang, S.-W.

Huber, R.

Hubler, G. K.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Hurley, D. H.

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

Jawaid, S.

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Kendziora, C. A.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Khafizov, M.

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

Khaskheli, A. A.

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Kobayahsi, T.

J. Miyazaki and T. Kobayahsi, “Photothermal microscopy for high sensitivity and high resolution absorption contrast imaging of biological tissues,” Photonics 4(4), 32 (2017).
[Crossref]

Kobayashi, T.

Kuno, M.

Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
[Crossref] [PubMed]

Lapierre-Landry, M.

Lapotko, D. O.

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

Lasne, D.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

Lasser, T.

Leslie, L. S.

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

Li, C.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Li, Z.

Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
[Crossref] [PubMed]

Link, S.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

Liu, H.

Long, M. E.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 191(4223), 183–185 (1976).
[Crossref] [PubMed]

Lounis, B.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Mandelis, A.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Marvel, R. E.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Mayerich, D.

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

McGill, R. A.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Mehta, P.

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

Mertiri, A.

A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
[Crossref] [PubMed]

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

A. Mertiri, “Mid-infrared photothermal hyperspectral imaging of biomolecular systems,” Boston University (2014).

Mertz, J.

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

Miyazaki, J.

Morari, C.

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

Naz, S.

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Nguyen, V.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Nizamani, S. M.

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Nizzero, S.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Opsal, J.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Oudjedi, L.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

Pache, C.

Papantonakis, M. R.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Parra-Vasquez, A. N. G.

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

Passian, A.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
[Crossref]

Patil, C. A.

Pawlak, M.

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

K. Strzałkowski, M. Streza, and M. Pawlak, “Lock-in thermography versus PPE calorimetry for accurate measurements of thermophysical properties of solid samples: A comparative study,” Measurement 64, 64–70 (2015).
[Crossref]

Pevzner, A.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Pfeifer, M.

Pham Tu Quoc, S.

S. Pham Tu Quoc, G. Cheymol, and A. Semerok, “New contactless method for thermal diffusivity measurements using modulated photothermal radiometry,” Rev. Sci. Instrum. 85(5), 054903 (2014).
[Crossref] [PubMed]

Rajakarunanayake, Y. N.

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

Rake, M.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Redmond, S. M.

Riyad, F.

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

Rosencwaig, A.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Ruf, A.

Salnick, A.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Samolis, P.

P. Samolis and M. Y. Sander, “Mid-infrared photothermal spectroscopy with phase analysis,” in Ultrafast Nonlinear Imaging and Spectroscopy VI (International Society for Optics and Photonics, 2018), Vol. 10753, p. 107530I.

Sander, M. Y.

A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
[Crossref] [PubMed]

A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
[Crossref] [PubMed]

P. Samolis and M. Y. Sander, “Mid-infrared photothermal spectroscopy with phase analysis,” in Ultrafast Nonlinear Imaging and Spectroscopy VI (International Society for Optics and Photonics, 2018), Vol. 10753, p. 107530I.

Santschi, C.

Selmke, M.

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivities studied by single-particle photothermal deflection microscopy,” ACS Photonics 4(3), 681–687 (2017).
[Crossref]

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivity measured using a single plasmonic nanoparticle,” Phys. Chem. Chem. Phys. 17(32), 20868–20872 (2015).
[Crossref] [PubMed]

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
[Crossref]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[Crossref] [PubMed]

Semerok, A.

S. Pham Tu Quoc, G. Cheymol, and A. Semerok, “New contactless method for thermal diffusivity measurements using modulated photothermal radiometry,” Rev. Sci. Instrum. 85(5), 054903 (2014).
[Crossref] [PubMed]

Shen, J.

Shi, Y.

Skala, M. C.

Slipchenko, M. N.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Stepnowski, J.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Stepnowski, S. V.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Stolyarov, A. M.

Streza, M.

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

K. Strzałkowski, M. Streza, and M. Pawlak, “Lock-in thermography versus PPE calorimetry for accurate measurements of thermophysical properties of solid samples: A comparative study,” Measurement 64, 64–70 (2015).
[Crossref]

Strzalkowski, K.

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

K. Strzałkowski, M. Streza, and M. Pawlak, “Lock-in thermography versus PPE calorimetry for accurate measurements of thermophysical properties of solid samples: A comparative study,” Measurement 64, 64–70 (2015).
[Crossref]

Su, M.-N.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Sullenberger, R. M.

Swofford, R. L.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 191(4223), 183–185 (1976).
[Crossref] [PubMed]

Talpur, F. N.

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Tetard, L.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
[Crossref]

Thundat, T.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
[Crossref]

Totachawattana, A.

A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
[Crossref] [PubMed]

A. Totachawattana, H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander, “Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast,” Opt. Lett. 41(1), 179–182 (2016).
[Crossref] [PubMed]

Tsurui, H.

Tucker-Schwartz, J. M.

Tzang, O.

O. Tzang and O. Cheshnovsky, “New modes in label-free super resolution based on photo-modulated reflectivity,” Opt. Express 23(16), 20926–20932 (2015).
[Crossref] [PubMed]

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Villiger, M.

Wang, L.-Y.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Wang, N.

Wang, Y.

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

Wickramasinghe, H. K.

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

Wrobel, T. P.

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

Xing, D.

Yang, S.

Yorulmaz, M.

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Zhang, C.

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Zhang, D.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Zhang, Z.

Zhao, J.

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
[Crossref] [PubMed]

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

Ziegler, L. D.

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

A. Mertiri, H. Altug, M. K. Hong, P. Mehta, J. Mertz, L. D. Ziegler, and S. Erramilli, “Nonlinear midinfrared photothermal spectroscopy using zharov splitting and quantum cascade lasers,” ACS Photonics 1(8), 696–702 (2014).
[Crossref] [PubMed]

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivities studied by single-particle photothermal deflection microscopy,” ACS Photonics 4(3), 681–687 (2017).
[Crossref]

Anal. Chem. (1)

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-Infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89(9), 4863–4867 (2017).
[Crossref] [PubMed]

Anal. Methods (1)

S. Jawaid, F. N. Talpur, H. I. Afridi, S. M. Nizamani, A. A. Khaskheli, and S. Naz, “Quick determination of melamine in infant powder and liquid milk by Fourier transform infrared spectroscopy,” Anal. Methods 6(14), 5269–5273 (2014).
[Crossref]

Analyst (Lond.) (1)

A. Totachawattana, M. K. Hong, S. Erramilli, and M. Y. Sander, “Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy,” Analyst (Lond.) 142(11), 1882–1890 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105(1), 013511 (2014).
[Crossref]

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[Crossref]

J. Appl. Phys. (1)

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: Theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

J. Mater. Res. (1)

M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, and D. H. Hurley, “Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications,” J. Mater. Res. 32(01), 204–216 (2017).
[Crossref]

J. Phys. Chem. B (1)

Z. Li, K. Aleshire, M. Kuno, and G. V. Hartland, “Super-resolution far-field infrared imaging by photothermal heterodyne imaging,” J. Phys. Chem. B 121(37), 8838–8846 (2017).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (2)

W.-S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3(10), 1393–1399 (2012).
[Crossref] [PubMed]

A. N. G. Parra-Vasquez, L. Oudjedi, L. Cognet, and B. Lounis, “Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals,” J. Phys. Chem. Lett. 3(10), 1400–1403 (2012).
[Crossref] [PubMed]

J. Phys. D: Appl. Phys. (1)

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump–probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys. 45(12), 125101 (2012).
[Crossref]

Meas. Sci. Technol. (1)

M. Pawlak, M. Streza, C. Morari, K. Strzałkowski, M. Depriester, and M. Chirtoc, “Quantitative thermal wave phase imaging of an IR semi-transparent GaAs wafer using IR lock-in thermography,” Meas. Sci. Technol. 28(2), 025008 (2017).
[Crossref]

Measurement (1)

K. Strzałkowski, M. Streza, and M. Pawlak, “Lock-in thermography versus PPE calorimetry for accurate measurements of thermophysical properties of solid samples: A comparative study,” Measurement 64, 64–70 (2015).
[Crossref]

Nano Lett. (2)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, and S. Link, “Single-particle absorption spectroscopy by photothermal contrast,” Nano Lett. 15(5), 3041–3047 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics 5(2), 110–116 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Photonics (1)

J. Miyazaki and T. Kobayahsi, “Photothermal microscopy for high sensitivity and high resolution absorption contrast imaging of biological tissues,” Photonics 4(4), 32 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Heber, M. Selmke, and F. Cichos, “Thermal diffusivity measured using a single plasmonic nanoparticle,” Phys. Chem. Chem. Phys. 17(32), 20868–20872 (2015).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 045424 (2006).
[Crossref]

Phys. Rev. Lett. (1)

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110(10), 103901 (2013).
[Crossref] [PubMed]

PLoS One (1)

L. S. Leslie, T. P. Wrobel, D. Mayerich, S. Bindra, R. Emmadi, and R. Bhargava, “High definition infrared spectroscopic imaging for lymph node histopathology,” PLoS One 10(6), e0127238 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Pham Tu Quoc, G. Cheymol, and A. Semerok, “New contactless method for thermal diffusivity measurements using modulated photothermal radiometry,” Rev. Sci. Instrum. 85(5), 054903 (2014).
[Crossref] [PubMed]

Sci. Adv. (1)

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2(9), e1600521 (2016).
[Crossref] [PubMed]

Science (2)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science 191(4223), 183–185 (1976).
[Crossref] [PubMed]

Small (1)

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Other (3)

P. Samolis and M. Y. Sander, “Mid-infrared photothermal spectroscopy with phase analysis,” in Ultrafast Nonlinear Imaging and Spectroscopy VI (International Society for Optics and Photonics, 2018), Vol. 10753, p. 107530I.

S. E. Bialkowski, “Photothermal spectroscopy methods for chemical analysis,” (Wiley, 1996).

A. Mertiri, “Mid-infrared photothermal hyperspectral imaging of biomolecular systems,” Boston University (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Mid-infrared PT imaging set-up with a tunable pulsed QCL pump and near-infrared probe laser, where amplitude (PTS) and phase information of the PT signal and the relative diffused signal ζ is detected at the lock-in.
Fig. 2
Fig. 2 (a) Amplitude PT image at 1582 cm−1 of a 200 μm x 100 μm sample area containing individual as well as clusters of melamine beads embedded in a 2.5 µm thin layer of 8CB liquid crystal, where contrast originating from single beads is low. (b) Corresponding ζ image of the same area with significantly enhanced contrast for the individual beads.
Fig. 3
Fig. 3 (a) Spectral evolution of the PT signal measured for the liquid crystal environment (PTSLC shown in dotted black) and for a single melamine bead (PTSm shown in solid blue). (b) The relative diffused signal measured for the liquid crystal environment (ζLC shown in dotted black) and for the melamine bead (ζm shown in solid blue) obtained after demodulation at 100 kHz. Amplitude images (c) and corresponding ζ images (d) captured for different wavenumbers of i) 1579.3 cm−1, ii) 1579.8 cm−1, iii) 1581 cm−1, iv) 1582 cm−1 and v)  1584 cm−1.
Fig. 4
Fig. 4 (a) Spectral evolution of the PT signal measured at the liquid crystal environment (PTSLC-2f shown in dotted black), and for a single melamine bead (PTSm-2f shown in solid blue). (b) The relative diffused signal measured for the liquid crystal environment (ζLC-2f shown in dotted black) and for the melamine bead (ζm-2f shown in solid blue) obtained after demodulation at 200 kHz. Amplitude images (c) and corresponding ζ images (d) captured for different wavenumbers of i) 1578.7 cm−1, ii) 1579 cm−1, iii) 1580 cm−1, iv) 1582 cm−1 and v)  1584 cm−1.
Fig. 5
Fig. 5 Linescan through the center of the bead of the relative diffused signal ζ for increasing wavenumber shifts Δν from the zero-crossing wavenumber for (a) 100 kHz demodulation with a minimum FWHM of 3.3 µm and (b) 200 kHz demodulation with a minimum FWHM of 1.3  µm. (c) Evolution of the FWHM in the fundamental and second harmonic ζ images. (d)   Evolution of contrast in the fundamental and second harmonic ζ images, where values above 90% are reached. (e) The sharpness dζ/dy for demodulation at 200 kHz increases much steeper than for demodulation at 100 kHz.

Metrics