Abstract

Simultaneous temperature and strain measurement with enhanced accuracy by using Deep Neural Networks (DNN) assisted Brillouin optical time domain analyzer (BOTDA) has been demonstrated. After trained by using combined ideal clean and noisy BGSs, the DNN is applied to extract both the temperature and strain directly from the measured double-peak BGS in large-effective-area fiber (LEAF). Both simulated and experimental data under different temperature and strain conditions have been used to verify the reliability of DNN-based simultaneous temperature and strain measurement, and demonstrate its advantages over BOTDA with the conventional equations solving method. Avoiding the small matrix determinant-induced large error, our DNN approach significantly improves the measurement accuracy. For a 24-km LEAF sensing fiber with a spatial resolution of 2m, the root mean square error (RMSE) and standard deviation (SD) of the measured temperature/strain by using DNN are improved to be 4.2°C/134.2με and 2.4°C/66.2με, respectively, which are much lower than the RMSE of 30.1°C/710.2με and SD of 19.4°C/529.1με for the conventional equations solving method. Moreover, the temperature and strain extraction by DNN from 600,000 BGSs along 24-km LEAF requires only 1.6s, which is much shorter than that of 5656.3s by the conventional equations solving method. The enhanced accuracy and fast processing speed make the DNN approach a practical way of achieving simultaneous temperature and strain measurement by the conventional BOTDA system without adding system complexity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Signal processing using artificial neural network for BOTDA sensor system

Abul Kalam Azad, Liang Wang, Nan Guo, Hwa-Yaw Tam, and Chao Lu
Opt. Express 24(6) 6769-6782 (2016)

Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition

Abul Kalam Azad, Faisal Nadeem Khan, Waled Hussein Alarashi, Nan Guo, Alan Pak Tao Lau, and Chao Lu
Opt. Express 25(14) 16534-16549 (2017)

Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy

Huan Wu, Liang Wang, Nan Guo, Chester Shu, and Chao Lu
Opt. Express 25(25) 31210-31220 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
    [Crossref] [PubMed]
  2. C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
    [Crossref]
  3. M. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]
  4. S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
    [Crossref] [PubMed]
  5. X. H. Jia, H. Q. Chang, K. Lin, C. Xu, and J. G. Wu, “Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing,” Opt. Express 25(6), 6997–7007 (2017).
    [Crossref] [PubMed]
  6. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  7. D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
    [Crossref] [PubMed]
  8. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  9. K. Kishida, Y. Yamauchi, and A. Guzik, “Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System,” Photonic Sens. 4(1), 1–11 (2014).
    [Crossref]
  10. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
    [Crossref] [PubMed]
  11. Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
    [Crossref] [PubMed]
  12. X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29(12), 1342–1344 (2004).
    [Crossref] [PubMed]
  13. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  14. Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fibre,” IEEE Photonics Technol. Lett. 22(18), 1364–1366 (2010).
    [Crossref]
  15. Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42(1), 171–174 (2017).
    [Crossref] [PubMed]
  16. L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004).
    [Crossref] [PubMed]
  17. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
    [Crossref]
  18. M. Alahbabi, Y. T. Cho, and T. P. Newson, “Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors,” Opt. Lett. 29(1), 26–28 (2004).
    [Crossref] [PubMed]
  19. X. Liu and X. Bao, “Brillouin spectrum in LEAF and simultaneous temperature and strain measurement,” J. Lightwave Technol. 30(8), 1053–1059 (2012).
    [Crossref]
  20. Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
    [Crossref]
  21. A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  22. A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Signal processing using artificial neural network for BOTDA sensor system,” Opt. Express 24(6), 6769–6782 (2016).
    [Crossref] [PubMed]
  23. H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer assisted by support vector machine for ultrafast temperature extraction,” J. Lightwave Technol. 35(19), 4159–4167 (2017).
    [Crossref]
  24. H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy,” Opt. Express 25(25), 31210–31220 (2017).
    [Crossref] [PubMed]
  25. B. Wang, N. Guo, F. N. Khan, A. K. Azad, L. Wang, C. Yu, and C. Lu, “Extraction of Temperature Distribution Using Deep Neural Networks for BOTDA Sensing System,” in 2017Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), paper s2027.
    [Crossref]
  26. B. Wang, L. Wang, C. Yu, and C. Lu, “Simultaneous temperature and strain measurement using deep neural networks for BOTDA sensing system,” in The Optical Fiber Communication Conference and Exhibition2018(OFC), paper Th2A.66, pp. 1–3.
  27. A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
    [Crossref] [PubMed]
  28. R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave Technol. 36(11), 2114–2121 (2018).
    [Crossref]

2018 (2)

Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
[Crossref]

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave Technol. 36(11), 2114–2121 (2018).
[Crossref]

2017 (7)

H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer assisted by support vector machine for ultrafast temperature extraction,” J. Lightwave Technol. 35(19), 4159–4167 (2017).
[Crossref]

H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy,” Opt. Express 25(25), 31210–31220 (2017).
[Crossref] [PubMed]

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
[Crossref] [PubMed]

X. H. Jia, H. Q. Chang, K. Lin, C. Xu, and J. G. Wu, “Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing,” Opt. Express 25(6), 6997–7007 (2017).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
[Crossref] [PubMed]

Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42(1), 171–174 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (1)

2014 (2)

2013 (1)

2012 (1)

2011 (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fibre,” IEEE Photonics Technol. Lett. 22(18), 1364–1366 (2010).
[Crossref]

2009 (1)

2005 (1)

2004 (3)

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Afshar V, S.

Alahbabi, M.

Alahbabi, M. N.

Angulo-Vinuesa, X.

Ania-Castanon, J.

Azad, A. K.

Ba, D.

Bao, X.

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Chang, H. Q.

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fibre,” IEEE Photonics Technol. Lett. 22(18), 1364–1366 (2010).
[Crossref]

X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29(12), 1342–1344 (2004).
[Crossref] [PubMed]

L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004).
[Crossref] [PubMed]

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Chin, S.

Cho, Y. T.

Corredera, P.

Dang, Y.

Diakaridia, S.

Dominguez-Lopez, A.

Dong, Y.

Duan, L.

Fang, J.

Fu, S.

Fuentes, A.

Gan, L.

Gonzalez-Herraez, M.

Guo, N.

Guzik, A.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System,” Photonic Sens. 4(1), 1–11 (2014).
[Crossref]

He, Z.

Hong, C.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

Hotate, K.

Jia, X. H.

Jiang, T.

Kim, B. Y.

Kishida, K.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System,” Photonic Sens. 4(1), 1–11 (2014).
[Crossref]

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Li, A.

Li, B.

Li, G.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

Li, H.

Li, M. J.

Li, Z.

Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
[Crossref]

Lin, K.

Liu, D.

Liu, X.

Liu, Z.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

Lopez-Gil, A.

Lopez-Higuera, J. M.

Lu, C.

Lu, Z.

Martin-Lopez, S.

Mirapeix, J.

Newson, T. P.

Pan, W.

Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
[Crossref]

Pan, Y.

Rochat, E.

Rodriguez-Cobo, L.

Ruiz-Lombera, R.

Shieh, W.

Shu, C.

Shum, P.

Shum, P. P.

Soto, M.

Soto, M. A.

Tam, H. Y.

Tang, M.

Teng, L.

Thevenaz, L.

Thévenaz, L.

Tong, W.

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Wang, B.

Wang, L.

Wang, M.

Wang, Y.

Wei, H.

Wu, H.

Wu, J. G.

Xu, C.

Xu, P.

Yamauchi, Y.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System,” Photonic Sens. 4(1), 1–11 (2014).
[Crossref]

Yan, L.

Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
[Crossref]

Yu, Q.

Zhang, H.

Zhang, M.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

Zhang, X.

Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
[Crossref]

Zhang, Y.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

Zhao, Z.

Zhou, D.

Zou, L.

Zou, W.

IEEE Photonics Technol. Lett. (2)

Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fibre,” IEEE Photonics Technol. Lett. 22(18), 1364–1366 (2010).
[Crossref]

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

IEEE Sens. J. (1)

Z. Li, L. Yan, X. Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sens. J. 18(17), 7100–7105 (2018).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (9)

S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
[Crossref] [PubMed]

X. H. Jia, H. Q. Chang, K. Lin, C. Xu, and J. G. Wu, “Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing,” Opt. Express 25(6), 6997–7007 (2017).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
[Crossref] [PubMed]

H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy,” Opt. Express 25(25), 31210–31220 (2017).
[Crossref] [PubMed]

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Signal processing using artificial neural network for BOTDA sensor system,” Opt. Express 24(6), 6769–6782 (2016).
[Crossref] [PubMed]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Photonic Sens. (1)

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of Optical Fibers Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System,” Photonic Sens. 4(1), 1–11 (2014).
[Crossref]

Sens. Actuators A Phys. (1)

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
[Crossref]

Sensors (Basel) (2)

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Other (2)

B. Wang, N. Guo, F. N. Khan, A. K. Azad, L. Wang, C. Yu, and C. Lu, “Extraction of Temperature Distribution Using Deep Neural Networks for BOTDA Sensing System,” in 2017Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), paper s2027.
[Crossref]

B. Wang, L. Wang, C. Yu, and C. Lu, “Simultaneous temperature and strain measurement using deep neural networks for BOTDA sensing system,” in The Optical Fiber Communication Conference and Exhibition2018(OFC), paper Th2A.66, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 General structure of DNN with n autoencoder hidden layers. Wn is the weight vector for the nth hidden layer.
Fig. 2
Fig. 2 Principle of using DNN for simultaneous temperature and strain measurement from double-peak BGS in LEAF. I: input layer; H1, H2: hidden layer; O: output layer.
Fig. 3
Fig. 3 Temperature and strain distribution extracted by DNN from 1000 simulated testing BGSs of 20dB SNR.
Fig. 4
Fig. 4 Temperature and strain distribution extracted by DNN from 1000 simulated testing BGSs of 10.58dB SNR.
Fig. 5
Fig. 5 Temperature and strain distribution extracted by the equations solving method from 1000 simulated testing BGSs of 10.58dB SNR.
Fig. 6
Fig. 6 BOTDA system setup. EDFA: erbium-doped fiber amplifier; PC: polarization controller; EOM: electro-optic modulator; RF: radio frequency; PG: pattern generator; VOA: variable optical attenuator; ISO: isolator; FUT: fiber under test; PS: polarization scrambler; FBG: fiber Bragg grating; PD: photodetector.
Fig. 7
Fig. 7 (a) Measured BGS distribution along LEAF sensing fiber ; (b) measured double-peak BGS of LEAF under room temperature of 23.5°C and strain of 0με; (c) measured BFS-temperature relations for Peak 1 and Peak 2; (d) measured BFS-strain relations for Peak 1 and Peak 2.
Fig. 8
Fig. 8 Temperature and strain distribution along the central part of the last 7m FUT extracted by DNN (blue curve) and the equations solving method (orange curve), respectively.
Fig. 9
Fig. 9 Temperature and strain distribution along the FUT inside the oven extracted by DNN (blue curve) and the equations solving method (orange curve), respectively.

Tables (4)

Tables Icon

Table 1 Corresponding error performance of DNN for results in Fig. 3

Tables Icon

Table 2 Corresponding error performance of DNN and the equations solving method for results in Figs. 4 and 5

Tables Icon

Table 3 Corresponding error performance of DNN and the equations solving method for results in Fig. 8

Tables Icon

Table 4 Corresponding error performance of DNN and the equations solving method for results in Fig. 9

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y j = f j ( w ij x i θ j )
g(υ)= g B Peak1 1+ [(υ υ B Peak1 )/(Δ υ B Peak1 /2)] 2 + g B Peak2 1+ [(υ υ B Peak2 )/(Δ υ B Peak2 /2)] 2
ΔBF S Peak1 = C T Peak1 ΔT+ C ε Peak1 Δε
ΔBF S Peak2 = C T Peak2 ΔT+ C ε Peak2 Δε
ΔT= C ε Peak2 ΔBF S Peak1 C ε Peak1 ΔBF S Peak2 C T Peak1 C ε Peak2 C T Peak2 C ε Peak1
Δε= C T Peak2 ΔBF S Peak1 C T Peak1 ΔBF S Peak2 C T Peak2 C ε Peak1 C T Peak1 C ε Peak2

Metrics