Abstract

An optofluidic system that uses the electrowetting technology to dynamically control the local surface plasmon resonance of the silver nanoparticle is invented. The silver nanoparticle is initially suspended at the interface of the polar liquid and the non-polar liquid. As the interface morphology changes with the applied voltage, the media distribution surrounding particle is changed accordingly, thus realizing the resonance absorption peak’s modulation. The investigation result shows that a wide range of the spectral colors from red to blue can be selectively absorbed just by a single device. Specifically, when the radius of the particle is 50 nm, the wavelength of the absorption peak can be dynamically modulated from 460 nm to 607 nm. This proposed method can be used to design and prepare rapidly adjustable optical elements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable spectral filters based on metallic nanowire gratings

Nanling Sun, Jie Cui, Yi She, Lan Lu, Jun Zheng, and Zhicheng Ye
Opt. Mater. Express 5(4) 912-919 (2015)

Large extinction ratio optical electrowetting shutter

Ryan D. Montoya, Kenneth Underwood, Soraya Terrab, Alexander M. Watson, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 24(9) 9660-9666 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by Surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  3. J. Langer, S. M. Novikov, and L. M. Liz-Marzán, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26(32), 322001 (2015).
    [Crossref] [PubMed]
  4. L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy: Part X,” J. Raman Spectrosc. 47(12), 1548–1565 (2016).
    [Crossref]
  5. E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
    [Crossref]
  6. Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).
  7. S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
    [Crossref]
  8. F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
    [Crossref] [PubMed]
  9. G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
    [Crossref] [PubMed]
  10. C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
    [Crossref] [PubMed]
  11. Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
    [Crossref]
  12. A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
    [Crossref] [PubMed]
  13. areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
    [Crossref]
  14. M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
    [Crossref]
  15. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  16. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  17. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
    [Crossref] [PubMed]
  18. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
    [Crossref]
  19. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18(15), 15635–15642 (2010).
    [Crossref] [PubMed]
  20. M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
    [Crossref] [PubMed]
  21. M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
    [Crossref] [PubMed]
  22. N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26(20), 3282–3289 (2014).
    [Crossref] [PubMed]
  23. N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
    [Crossref] [PubMed]
  24. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [Crossref] [PubMed]
  25. H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
    [Crossref] [PubMed]
  26. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]

2018 (1)

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

2017 (1)

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

2016 (2)

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy: Part X,” J. Raman Spectrosc. 47(12), 1548–1565 (2016).
[Crossref]

2015 (3)

J. Langer, S. M. Novikov, and L. M. Liz-Marzán, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26(32), 322001 (2015).
[Crossref] [PubMed]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

2014 (4)

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26(20), 3282–3289 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

2013 (4)

Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

2012 (2)

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

2010 (3)

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18(15), 15635–15642 (2010).
[Crossref] [PubMed]

2008 (1)

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
[Crossref]

2006 (1)

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2003 (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by Surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Armelles, G.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18(15), 15635–15642 (2010).
[Crossref] [PubMed]

Blackie, E.

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
[Crossref]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Cao, Z.

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

Capasso, F.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Cebollada, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Chen, L.

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

Chen, W.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Chen, X.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Chigrin, D. N.

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Chu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dong, J.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by Surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Engheta, N.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Etchegoin, P.

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
[Crossref]

Fan, Y.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fu, Q.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Gao, C.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Garcia-Martin, J.-M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

García-Martín, A.

Garrell, R. L.

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Gianola, D. S.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

González, M. U.

González-Díaz, J. B.

Guo, J.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Halas, N. J.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

He, L.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

He, Y.

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jiang, N.

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26(20), 3282–3289 (2014).
[Crossref] [PubMed]

Jiang, X. X.

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

Kagan, C. R.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Kik, P. G.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

Kikkawa, J. M.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Kim, C. J.

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Langer, J.

J. Langer, S. M. Novikov, and L. M. Liz-Marzán, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26(32), 322001 (2015).
[Crossref] [PubMed]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Le Ru, E.

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
[Crossref]

Lee, S. T.

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Li, H.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Liberal, I.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Lin, H. Q.

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

Lindenberg, A. M.

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Liu, F.

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

Liu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Liz-Marzán, L. M.

J. Langer, S. M. Novikov, and L. M. Liz-Marzán, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26(32), 322001 (2015).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Loo, J. A.

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

Lu, Q.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

Lumdee, C.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

Magagnosc, D. J.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Maß, T. W. W.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Meyer, M.

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
[Crossref]

Michel, A.-K. U.

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Moon, H.

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

Murray, C. B.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Nafie, L. A.

L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy: Part X,” J. Raman Spectrosc. 47(12), 1548–1565 (2016).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by Surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nordlander, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Novikov, S. M.

J. Langer, S. M. Novikov, and L. M. Liz-Marzán, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26(32), 322001 (2015).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pruneri, V.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Qin, F.

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

Quidant, R.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Renger, J.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Ruan, Q.

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

Rude, M.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Salinga, M.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schönauer, K.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Shao, L.

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26(20), 3282–3289 (2014).
[Crossref] [PubMed]

Shen, N.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Shin, Y. J.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Simpson, R. E.

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Song, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Stein, A.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Tang, C.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

Taubner, T.

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Toroghi, S.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

Torrado, J. F.

Wang, G.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Wang, J.

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26(20), 3282–3289 (2014).
[Crossref] [PubMed]

Wang, M.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

Wang, S. Y.

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wang, Z.

Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

Wei, X. P.

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

Wei, Z.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Wheeler, A. R.

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Wong, C.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Wu, Y.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Wuttig, M.

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Xu, T. T.

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

Yan, Z.

Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).

Yang, H.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yin, Y.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, Y.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Yun, H.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Zalden, P.

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Zhan, P.

Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).

Zhang, F.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Zhang, J.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Zhang, P.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Zhao, Q.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Zhu, Z.

Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).

Zorba, S.

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

ACS Nano (3)

F. Liu, Z. Cao, C. Tang, L. Chen, and Z. Wang, “Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy,” ACS Nano 4(5), 2643–2648 (2010).
[Crossref] [PubMed]

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning[J],” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano 6(7), 6301–6307 (2012).
[Crossref] [PubMed]

ACS Photonics (3)

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

areA.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

M. Rude, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active Control of Surface Plasmon Waveguides with a Phase Change Material,” ACS Photonics 2(6), 669–674 (2015).
[Crossref]

Adv. Mater. (1)

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26(20), 3282–3289 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

S. Y. Wang, X. X. Jiang, T. T. Xu, X. P. Wei, S. T. Lee, and Y. He, “Reactive ion etching-assisted surface-enhanced scattering measurements on the single nanoparticle level,” Appl. Phys. Lett. 104(24), 243104 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

M. Wang, C. Gao, L. He, Q. Lu, J. Zhang, C. Tang, S. Zorba, and Y. Yin, “Magnetic tuning of plasmonic excitation of gold nanorods,” J. Am. Chem. Soc. 135(41), 15302–15305 (2013).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy: Part X,” J. Raman Spectrosc. 47(12), 1548–1565 (2016).
[Crossref]

E. Le Ru, M. Meyer, E. Blackie, and P. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement at factors a hot spot,” J. Raman Spectrosc. 39(9), 1127–1134 (2008).
[Crossref]

Lab Chip (1)

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS,” Lab Chip 6(9), 1213–1219 (2006).
[Crossref] [PubMed]

Nano Lett. (4)

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Nanoscale (1)

N. Jiang, Q. Ruan, F. Qin, J. Wang, and H. Q. Lin, “Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres,” Nanoscale 7(29), 12516–12526 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

J. Langer, S. M. Novikov, and L. M. Liz-Marzán, “Sensing using plasmonic nanostructures and nanoparticles,” Nanotechnology 26(32), 322001 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Zhang, D. J. Magagnosc, I. Liberal, Y. Yu, H. Yun, H. Yang, Y. Wu, J. Guo, W. Chen, Y. J. Shin, A. Stein, J. M. Kikkawa, N. Engheta, D. S. Gianola, C. B. Murray, and C. R. Kagan, “High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture,” Nat. Nanotechnol. 12(3), 228–232 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Nature (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Sci. China. Phys. Mech. (1)

Z. Zhu, Z. Yan, P. Zhan, and Z. Wang, “Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation,” Sci. China. Phys. Mech. 56, 1806–1809 (2013).

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by Surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) the initial state and (b) the situation after applying voltage of a classic electrowetting device in sandwich configuration. (c) is the sketch of the model we created. (d), (e) and (f) are the three cases of water/oil interface morphology after voltage application.
Fig. 2
Fig. 2 The relationship between the contact angle and the voltage. The red line indicates Teflon, the green line indicates PMMA, and the blue line indicates polycarbonate.
Fig. 3
Fig. 3 (a), (b) and (c) are schematic of interface morphology and particle height at three different voltages. (d) is the absorptivity of the device correspond to the absorption spectrum.
Fig. 4
Fig. 4 (a) is a schematic diagram of the proposed integrated spectrum absorber. (b) In the CIE 1931xy chromaticity coordinates, the range of color gamut that the absorber can generate.
Fig. 5
Fig. 5 (a) shows the different absorbance by the nanoparticles (R = 30 - 70nm, vertical axis) and external voltage (U = 0 - 14.5V, horizontal axis) in the designed optofluidic system. (b) generation and modulation of absorption peaks for different nanoparticle radius and external voltages. (c), (d), (e) and (f) are absorption peaks at different voltages for nanoparticle radius ranging from 30 to 40, 60, and 70 nm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ s1 + σ 12 cos θ 0 = γ s2 .
γ s1 ε V 2 2 d f + σ 12 cos θ ew = γ s2 .
cos θ ew =cos θ 0 + ε V 2 2 σ 12 d f .

Metrics