Abstract

The onset of self-absorption of laser-induced plasma poses a problem for converting emission line intensities to concentrations, which is one of the main bottlenecks in quantitative laser-induced breakdown spectroscopy (LIBS) measurements. In this paper, the effects of atmosphere and laser fluence on self-absorption reduction of the plasma induced on tungsten-copper alloy target were investigated with nanosecond infrared (1064 nm) laser pulse over a range of 2.9 to 18.2 J/cm2. The time-resolved features of self-absorption, and temperature and electron density of the plasma were characterized in atmospheric air and argon, respectively. The experimental results show the effect of self-absorption can be significantly reduced by increasing the laser pulse energy. The argon atmosphere is more helpful for self-absorption reduction. The time-resolved diagnostics of emission spectra in the early stage of the plasma formation are very effective to prevent self-absorption to improve the LIBS analytical performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K.H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng
Opt. Express 24(23) 26521-26528 (2016)

Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy

X.N. He, W. Hu, C.M. Li, L.B. Guo, and Y.F. Lu
Opt. Express 19(11) 10997-11006 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
    [Crossref]
  2. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  3. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49(4), 499–507 (1995).
    [Crossref]
  4. R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
    [Crossref]
  5. H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
    [Crossref]
  6. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).
  7. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).
  8. A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
    [Crossref]
  9. T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136(1-3), 391–399 (2007).
    [Crossref] [PubMed]
  10. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
    [Crossref]
  11. R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
    [Crossref]
  12. V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
    [Crossref]
  13. D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
    [Crossref] [PubMed]
  14. J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
    [Crossref] [PubMed]
  15. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).
  16. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, 2006).
  17. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
    [Crossref]
  18. R. Noll, Laser-Induced Breakdown Spectroscopy (Springer Berlin Heidelberg, 2012).
  19. F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).
  20. M. Kuzuya and O. Mikami, “Effect of argon atmosphere on self-absorption of a spectral line in laser microprobe analysis,” Jpn. J. Appl. Phys. 29(8), 1568–1569 (1990).
    [Crossref]
  21. Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
    [Crossref] [PubMed]
  22. E. Gudimenko, V. Milosavljević, and S. Daniels, “Influence of self-absorption on plasma diagnostics by emission spectral lines,” Opt. Express 20(12), 12699–12709 (2012).
    [Crossref] [PubMed]
  23. J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
    [Crossref]
  24. F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
    [PubMed]
  25. V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).
  26. S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
    [Crossref]
  27. S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).
  28. Y. Iida, “Atomic emission characteristics of laser-induced plasmas in an argon atmosphere at reduced pressure,” Appl. Spectrosc. 43(2), 229–234 (1989).
    [Crossref]
  29. R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).
  30. A. Kramida Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.5.6), [Online]. Available: https://physics.nist.gov/asd [2018, August 2]. National Institute of Standards and Technology, Gaithersburg, MD.
  31. N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
    [Crossref]
  32. I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).
  33. V. P. A. W. Miziolek and I. Schechter, Laser-Induced Breakdown Spectroscopy (Elsevier, 2006).
  34. A. Lesage, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 13, 649–686 (1984).
  35. R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
    [Crossref] [PubMed]
  36. V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42(30), 5947–5962 (2003).
    [Crossref] [PubMed]
  37. D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh, and D. W. Kim, “Quantitative analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51(1), 22–29 (1997).
    [Crossref]
  38. M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
    [Crossref]
  39. A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).
  40. N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
    [Crossref]

2018 (2)

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

2017 (1)

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

2016 (1)

2015 (2)

J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
[Crossref] [PubMed]

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

2014 (2)

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

2013 (5)

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

2012 (4)

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

E. Gudimenko, V. Milosavljević, and S. Daniels, “Influence of self-absorption on plasma diagnostics by emission spectral lines,” Opt. Express 20(12), 12699–12709 (2012).
[Crossref] [PubMed]

2011 (1)

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

2007 (2)

S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136(1-3), 391–399 (2007).
[Crossref] [PubMed]

2006 (1)

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

2005 (2)

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

2003 (2)

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42(30), 5947–5962 (2003).
[Crossref] [PubMed]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

2002 (2)

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

2001 (2)

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

2000 (1)

1999 (1)

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

1997 (1)

1995 (1)

1990 (1)

M. Kuzuya and O. Mikami, “Effect of argon atmosphere on self-absorption of a spectral line in laser microprobe analysis,” Jpn. J. Appl. Phys. 29(8), 1568–1569 (1990).
[Crossref]

1989 (1)

1984 (1)

A. Lesage, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 13, 649–686 (1984).

Agrawal, R.

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Almaviva, S.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Amamou, H.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42(30), 5947–5962 (2003).
[Crossref] [PubMed]

Barthélemy, O.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Bois, A.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Bol’shakov, A. A.

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Borges, F. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

Bredice, F.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

Bulajic, D.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

Cabalín, L. M.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

Caneve, L.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Carpentier, S.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Chaker, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Chan, C. Y.

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

Chen, G.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

Cheng, L.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

Cielo, P.

Colao, F.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Corsi, M.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

Cremers, D. A.

Cristoforetti, G.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

Czarnecka, A.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Dagdigian, P. J.

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42(30), 5947–5962 (2003).
[Crossref] [PubMed]

Daniels, S.

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42(30), 5947–5962 (2003).
[Crossref] [PubMed]

Ding, F.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Ding, H.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Doeff, M.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

Dong, M.

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

Escourbiac, F.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Farid, N.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Feng, C.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Ferhat, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Ferris, M. J.

Fortes, F. J.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

Fortuna, E.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

Fu, C.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Fuhr, J. R.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Gasior, P.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Gierse, N.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Gondal, M. A.

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136(1-3), 391–399 (2007).
[Crossref] [PubMed]

Gonzalez, J.

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Gonzalez, J. J.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

Gornushkin, I. B.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

Greif, R.

S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Gudimenko, E.

Guo, L.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Guo, L. B.

Hahn, D. W.

Hai, R.

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Hakola, A.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Hang, W.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Hao, Z.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Hao, Z. Q.

Harilal, S. S.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

Hassanein, A.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

He, M.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Hegazy, H.

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

Hirai, T.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Hou, H.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

Hu, Z.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Huang, B.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Huber, A.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Hussain, T.

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136(1-3), 391–399 (2007).
[Crossref] [PubMed]

Iida, Y.

Jiang, Y.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Johnston, T. W.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Karhunen, J.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Kim, D. E.

Kim, D. W.

King, L. A.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

Knight, A. K.

Komarov, V.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Konjevic, N.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Kubkowska, M.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Kukushkin, A. S.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Kumar, R.

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Kuzuya, M.

M. Kuzuya and O. Mikami, “Effect of argon atmosphere on self-absorption of a spectral line in laser microprobe analysis,” Jpn. J. Appl. Phys. 29(8), 1568–1569 (1990).
[Crossref]

Laan, M.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Laserna, J. J.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

Laville, S.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Le Drogoff, B.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Legnaioli, S.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

Lesage, A.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

A. Lesage, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 13, 649–686 (1984).

Li, C.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Li, C. M.

Li, J.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Li, J. M.

Li, K. H.

Li, X.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Li, X. Y.

Lisgo, S.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Lissovski, A.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Liu, J.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Liu, L.

Liu, P.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Loarte, A.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Lu, J.

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

Lu, Y. F.

Lucena, P.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

Luo, G. N.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Maddaluno, G.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Malaquias, A.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Mao, X.

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Margot, J.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Mcnesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

Merola, M.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Mikami, O.

M. Kuzuya and O. Mikami, “Effect of argon atmosphere on self-absorption of a spectral line in laser microprobe analysis,” Jpn. J. Appl. Phys. 29(8), 1568–1569 (1990).
[Crossref]

Milosavljevic, V.

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42(30), 5947–5962 (2003).
[Crossref] [PubMed]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

Moros, J.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

Naik, A. S.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Nusca, M. J.

Oh, K. J.

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

Oropeza, D.

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Palleschi, V.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

Pardini, L.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

Paris, P.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Park, H. K.

Pathak, A. K.

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Petersson, P.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Philipps, V.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Pitts, R. A.

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

Rai, A. K.

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Rai, S.

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Redon, R.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Richardson, T.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

Ripert, M.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Rocco, H. O. D.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

Rossetto, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Rubel, M.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Russo, R.

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

Russo, R. E.

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Sabsabi, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49(4), 499–507 (1995).
[Crossref]

Salvetti, A.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

Scherbarth, N. L.

Schweer, B.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Sergienko, G.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Shen, M.

Sherbini, A. M. E.

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

Sherbini, T. M. E.

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

Singh, V. K.

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Smith, B. W.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

Sobral, H.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

Sorkhabi, O.

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Suen, T. W.

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Sun, L.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Tang, Y.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Tognoni, E.

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

van der Meiden, H. J.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Vidal, F.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Villagran-Muniz, M.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

von Kaenel, Y.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

Wang, L.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Wang, X.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Wen, S. B.

S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Wiese, W. L.

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Winefordner, J. D.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

Wu, D.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Wu, J.

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Xiao, Q.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Yang, X.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Yang, X. Y.

Yoo, J.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Yoo, K. J.

Yu, H.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Zeng, X.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Zeng, X. Y.

Zhang, B.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Zhang, L.

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Zhang, S.

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

Zhao, D.

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

Zhao, N.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
[Crossref] [PubMed]

Zheng, R.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

Zlobinski, M.

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Zorba, V.

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

Anal. Chem. (2)

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85(2), 640–669 (2013).
[PubMed]

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Appl. Spectrosc. Rev. 47(1), 14–40 (2012).
[Crossref]

Environ. Monit. Assess. (1)

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136(1-3), 391–399 (2007).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (4)

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, and V. Zorba, “Laser plasma spectrochemistry,” J. Anal. At. Spectrom. 26(8), 1596–1603 (2011).
[Crossref]

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. E. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30(11), 2295–2302 (2015).
[Crossref]

M. Dong, X. Mao, J. Gonzalez, J. Lu, and R. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066–2075 (2012).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. F. Lu, “Evaluation of self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Appl. Phys. (2)

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115(3), 033107 (2014).
[Crossref]

S. B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

J. Nucl. Mater. (1)

R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, and A. S. Naik, “A full tungsten divertor for ITER: Physics issues and design status,” J. Nucl. Mater. 438, S48–S56 (2013).
[Crossref]

J. Phys. Chem. Ref. Data (2)

A. Lesage, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 13, 649–686 (1984).

N. Konjević, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (A Critical Review of Selected Data for the Period 1989 Through 2000),” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Kuzuya and O. Mikami, “Effect of argon atmosphere on self-absorption of a spectral line in laser microprobe analysis,” Jpn. J. Appl. Phys. 29(8), 1568–1569 (1990).
[Crossref]

Nucl. Fusion (1)

V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, “Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices,” Nucl. Fusion 53(9), 093002 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

D. Zhao, C. Li, Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. N. Luo, L. Wang, and H. Ding, “Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak,” Rev. Sci. Instrum. 89(7), 073501 (2018).
[Crossref] [PubMed]

Spectrochim. Acta, Part B At. Spectrosc. (10)

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B At. Spectrosc. 56, 987–1002 (2001).

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mcnesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta, Part B At. Spectrosc. 56, 777–793 (2001).

R. Hai, N. Farid, D. Zhao, L. Zhang, J. Liu, H. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak,” Spectrochim. Acta, Part B At. Spectrosc. 87, 147–152 (2013).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B At. Spectrosc. 57, 339–353 (2002).

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. D. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 61, 1294–1303 (2006).

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, and A. W. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, Part B At. Spectrosc. 60, 926–934 (2005).

S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B At. Spectrosc. 97, 13–33 (2014).

R. Hai, X. Mao, C. Y. Chan, R. E. Russo, H. Ding, and V. Zorba, “Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation,” Spectrochim. Acta, Part B At. Spectrosc. 148, 92–98 (2018).

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, Part B At. Spectrosc. 54, 1207–1217 (1999).

A. M. E. Sherbini, T. M. E. Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B At. Spectrosc. 60, 1573–1579 (2005).

Other (4)

V. P. A. W. Miziolek and I. Schechter, Laser-Induced Breakdown Spectroscopy (Elsevier, 2006).

A. Kramida Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.5.6), [Online]. Available: https://physics.nist.gov/asd [2018, August 2]. National Institute of Standards and Technology, Gaithersburg, MD.

R. Noll, Laser-Induced Breakdown Spectroscopy (Springer Berlin Heidelberg, 2012).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental system.
Fig. 2
Fig. 2 (a) Spectral emission from tungsten-copper LIBS plume generated in an argon and an air atmosphere. The gate delay and width were 2 μs and 4 μs, respectively. (b) Variation of emission intensity of Cu I 465.11 nm line versus incident laser fluence. (c) Variation of Line intensity ratio of Cu I 465.11 nm emission in argon to that in air versus laser fluence. (d) Plasma parameters (excitation temperature and electron density) as a function of laser fluence.
Fig. 3
Fig. 3 Temporal variation of peak area of Cu I 465.11 nm line in argon and air. The acquisition gate widths are 1μs. Points: experimental data. Solid lines: exponential fits to the data.
Fig. 4
Fig. 4 Cu I resonance lines at 324.75 and 327.40 nm acquired at different fluences in air (a) and argon (b). The gate delay and gate width of the measurement were 2 and 4 μs, respectively.
Fig. 5
Fig. 5 Electron density versus plasma temperature at different laser fluences in air and argon. The numbers close to the data points in the graph refer to the following laser fluences: 1, 2.9 J/cm2; 2, 5.9 J/cm2; 3, 9.2 J/cm2; 4, 12.4 J/cm2; 5, 15.3 J/cm2; 6, 18.2 J/cm2; 7, 2.9 J/cm2; 8, 5.9 J/cm2; 9, 9.2 J/cm2; 10, 12.4 J/cm2; 11, 15.3 J/cm2; and 12, 18.2 J/cm2. The open symbols (1-6) and solid symbols (7-12) represent LIBS measurements in air and argon atmosphere, respectively.
Fig. 6
Fig. 6 Time evolution of Cu I resonance lines in air under 12.4 J/cm2 (a) and 5.9 J/cm2 (b). During this experiment, gate width was fixed at 1 μs.
Fig. 7
Fig. 7 Time-resolved evolution of the electron density (a) and excitation temperature (b) of plasmas produced in air and in argon.
Fig. 8
Fig. 8 Self-absorption coefficient (SA) of Cu I 324.75 nm line under different experimental conditions. Gate width was fixed at 1 μs.

Tables (1)

Tables Icon

Table 1 Neutral Cu parameters used for plasma temperature calculation [30]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ln( λ ij I ij g i A ij )=- E i K T exc +ln[ N( T exc ) U( T exc ) ]
Δλ=2ω× n e 1 0 16
SA= I O ( λ 0 ) I T ( λ 0 )
SA= ( Δ λ T Δ λ O ) 2
S A 324.75 = ( 2 ω 324.75 Δ λ O(324.75) × n e 1 0 16 ) 2
n e = Δ λ O(465.11) ×1 0 16 2 ω 465.11
S A 324.75 = ( ω 324.75 ω 465.11 × Δ λ O(465.11) Δ λ O(324.75) ) 2

Metrics