Abstract

The reliability and small size of solid state scanners makes them ideal for LIDAR. We fabricated and demonstrated the successful operation of an optical scanner using silicon photonics integrated circuit technology. The scanner comprises a ring resonator multiplexer and a number of grating arrays, and employs a beam switching method, which means that the scanner is movement-free. The multiplexer determines the optical path and light is emitted from the selected grating. The scanning angle obtained was 6 degrees. LIDAR sensors can be used in automotive applications for automated cruising.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide

Hiroshi Abe, Moe Takeuchi, Goro Takeuchi, Hiroyuki Ito, Tomoki Yokokawa, Keisuke Kondo, Yuya Furukado, and Toshihiko Baba
Opt. Express 26(8) 9389-9397 (2018)

InP photonic circuits using generic integration [Invited]

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit
Photon. Res. 3(5) B60-B68 (2015)

Integrated photonics in the 21st century

Lars Thylén and Lech Wosinski
Photon. Res. 2(2) 75-81 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
    [Crossref] [PubMed]
  2. D. Inoue, T. Ichikawa, H. Matsubara, and M. Kagami, “Improvement of Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier(3),” Proc. SPIE defense, security and sensing8731, (2013)
  3. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  4. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  5. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express 23(4), 5117–5125 (2015).
    [Crossref] [PubMed]
  6. G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
    [Crossref] [PubMed]
  7. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  8. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
    [Crossref] [PubMed]
  9. D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “An optical scanner based on beam switching method fabricated on silicon photonics circuit,” Proc. SPIE Defense + Security, 1063606 (2018)
    [Crossref]
  10. D. Inoue, T. Ichikawa, A. Kawasaki, T. Yamashita, “Densely packed grating,” Journal of the Japan Society of Infrared Science and Technology, (2018)
  11. J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.
    [Crossref]

2018 (2)

2017 (1)

2016 (1)

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

2011 (1)

Abe, H.

Abiri, B.

Aflatouni, F.

Baba, T.

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

Coldren, L. A.

Cole, D. B.

Doylend, J. K.

Furukado, Y.

Hajimiri, A.

Heck, M. J. R.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Ichikawa, T.

D. Inoue, T. Ichikawa, H. Matsubara, and M. Kagami, “Improvement of Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier(3),” Proc. SPIE defense, security and sensing8731, (2013)

Inoue, D.

D. Inoue, T. Ichikawa, H. Matsubara, and M. Kagami, “Improvement of Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier(3),” Proc. SPIE defense, security and sensing8731, (2013)

Ito, H.

Kagami, M.

D. Inoue, T. Ichikawa, H. Matsubara, and M. Kagami, “Improvement of Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier(3),” Proc. SPIE defense, security and sensing8731, (2013)

Kondo, K.

Matsubara, H.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

D. Inoue, T. Ichikawa, H. Matsubara, and M. Kagami, “Improvement of Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier(3),” Proc. SPIE defense, security and sensing8731, (2013)

Ogawa, M.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Ohta, M.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Peters, J. D.

Poulton, C. V.

Raval, M.

Rekhi, A.

Soga, M.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Takai, I.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Takeuchi, G.

Takeuchi, M.

Terada, Y.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Vermeulen, D.

Watts, M. R.

Yaacobi, A.

Yamashita, T.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Yokokawa, T.

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Sensors (Basel) (1)

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Other (4)

D. Inoue, T. Ichikawa, H. Matsubara, and M. Kagami, “Improvement of Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier(3),” Proc. SPIE defense, security and sensing8731, (2013)

D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “An optical scanner based on beam switching method fabricated on silicon photonics circuit,” Proc. SPIE Defense + Security, 1063606 (2018)
[Crossref]

D. Inoue, T. Ichikawa, A. Kawasaki, T. Yamashita, “Densely packed grating,” Journal of the Japan Society of Infrared Science and Technology, (2018)

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Block diagram and (b) schematic diagram of the beam switching method.
Fig. 2
Fig. 2 (a) Relationship between the angular resolution, the focal length of the lens and the pitch of the gratings and (b) Relationship between the scanning angle, the focal length of the lens and the pitch of the gratings.
Fig. 3
Fig. 3 Structure of the silicon photonics integrated circuit.
Fig. 4
Fig. 4 (a) Bird’s eye view of the original grating, (b) numerical calculation of the NFP of the original grating.
Fig. 5
Fig. 5 (a) Diamond shaped grating for dense packing, and (b) calculated NFP of the diamond shaped grating.
Fig. 6
Fig. 6 (a) Diagram showing the areas used in the numerical calculations used to examine the effect of removing the four corners from the grating, and (b) result of the numerical calculations, showing the dependence of the emission efficiency on the fraction of the area remaining.
Fig. 7
Fig. 7 (a) The layout of the device, and (b) microscope image of the silicon photonics integrated circuit.
Fig. 8
Fig. 8 A picture of the prototype scanner.
Fig. 9
Fig. 9 (a) The NFP of the original grating, and (b) the NFP of the diamond shaped grating (experimental results).
Fig. 10
Fig. 10 The FFPs of the original grating and the diamond shaped grating. (a) FFP along the x direction, (b) FFP along the z direction. (experimental results).
Fig. 11
Fig. 11 Far field pattern emitted from the scanner based on the beam switching method.
Fig. 12
Fig. 12 The layout of the silicon photonics integrated chip for the feasibility study for a 2D scanner.
Fig. 13
Fig. 13 The FFPs of light emitted from the 2D grating array.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ res = tan 1 ( p f )
θ scan = tan 1 ( l dev f )
D> l dev +2ftan θ div

Metrics