Abstract

This work demonstrates a record 160 m long visible light communication (VLC) link using LED transmitters and an image sensor-based receiver, for distance-critical applications. This marks the longest VLC distance achieved to date, using a combination of novel modulation technique at the transmitter and an undersampling-based receiver incorporating adaptive threshold decisioning. Experimental results demonstrate low bit error rate (BER) performance at the achieved communication distance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication

Chi-Wai Chow, Ruei-Jie Shiu, Yen-Chun Liu, Xin-Lan Liao, Kun-Hsien Lin, Yi-Chang Wang, and Yi-Yuan Chen
Opt. Express 26(10) 12530-12535 (2018)

Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor

Chi-Wai Chow, Ruei-Jie Shiu, Yen-Chun Liu, Yang Liu, and Chien-Hung Yeh
Opt. Express 26(6) 7079-7084 (2018)

Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera

Jin Shi, Jing He, Jing He, Rui Deng, Yiran Wei, Fengting Long, Yun Cheng, and Lin Chen
Opt. Express 25(14) 15905-15912 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Lu, P. Tian, H. Chen, I. Baranowski, H. Fu, X. Huang, J. Montes, Y. Fan, H. Wang, X. Liu, R. Liu, and Y. Zhao, “Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK,” Opt. Express 25, 17971 (2017).
    [Crossref] [PubMed]
  2. S. Videv and H. Haas, “Practical space shift keying VLC system,” in 2014 IEEE Wirel. Commun. Netw. Conf., vol. 1 (IEEE, 2014), pp. 405–409.
  3. Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics J. 7, 1–9 (2015).
  4. R. Mitra and V. Bhatia, “Precoded chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC,” IEEE Trans. Commun. 65, 4845–4856 (2017).
    [Crossref]
  5. Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express 20, 23019 (2012).
    [Crossref] [PubMed]
  6. B. Fahs, A. J. Chowdhury, and M. M. Hella, “A 12-m 2. 5-Gb/s lighting compatible integrated receiver for OOK visible light communication links,” J. Light. Technol. 34, 3768–3775 (2016).
  7. R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
    [Crossref]
  8. C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
    [Crossref]
  9. C.-W. Chow, C.-Y. Chen, and S.-H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23, 26080 (2015).
    [Crossref] [PubMed]
  10. K. Liang, C.-W. Chow, Y. Liu, and C.-H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24, 25641 (2016).
    [Crossref] [PubMed]
  11. Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).
  12. J. Shi, J. He, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, “Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera,” Opt. Express 25, 15905 (2017).
    [Crossref] [PubMed]
  13. Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.
  14. C.-W. Chow, R.-J. Shiu, Y.-C. Liu, Y. Liu, and C.-H. Yeh, “Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor,” Opt. Express 26, 7079 (2018).
    [Crossref] [PubMed]
  15. Y. Amano and K. Kamakura, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in 2013 IEEE Glob. Commun. Conf. (GLOBECOM), Atlanta, GA, (2013), pp. 2430–2435.
    [Crossref]
  16. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
    [Crossref]
  17. Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
    [Crossref]
  18. R. D. Roberts and H. Oregon, “Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom),” in 22nd Wirel. Opt. Commun. Conf., (Chongqing, 2013), pp. 645–648.
  19. P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.
  20. P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

2018 (1)

2017 (3)

2016 (5)

B. Fahs, A. J. Chowdhury, and M. M. Hella, “A 12-m 2. 5-Gb/s lighting compatible integrated receiver for OOK visible light communication links,” J. Light. Technol. 34, 3768–3775 (2016).

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

K. Liang, C.-W. Chow, Y. Liu, and C.-H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24, 25641 (2016).
[Crossref] [PubMed]

Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

2015 (3)

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

C.-W. Chow, C.-Y. Chen, and S.-H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23, 26080 (2015).
[Crossref] [PubMed]

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics J. 7, 1–9 (2015).

2013 (1)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

2012 (1)

Afgani, M.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
[Crossref]

Amano, Y.

Y. Amano and K. Kamakura, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in 2013 IEEE Glob. Commun. Conf. (GLOBECOM), Atlanta, GA, (2013), pp. 2430–2435.
[Crossref]

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Arai, S.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Baranowski, I.

Bhatia, V.

R. Mitra and V. Bhatia, “Precoded chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC,” IEEE Trans. Commun. 65, 4845–4856 (2017).
[Crossref]

Boubezari, R.

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Bouridane, A.

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Cahyadi, W. A.

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics J. 7, 1–9 (2015).

Chen, C.-Y.

Chen, H.

Chen, H.-Y.

Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).

Chen, L.

Chen, S.-H.

Cheng, Y.

Chow, C. W.

Chow, C.-W.

Chowdhury, A. J.

B. Fahs, A. J. Chowdhury, and M. M. Hella, “A 12-m 2. 5-Gb/s lighting compatible integrated receiver for OOK visible light communication links,” J. Light. Technol. 34, 3768–3775 (2016).

Chung, Y. H.

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics J. 7, 1–9 (2015).

Danakis, C.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
[Crossref]

Deng, R.

Fahs, B.

B. Fahs, A. J. Chowdhury, and M. M. Hella, “A 12-m 2. 5-Gb/s lighting compatible integrated receiver for OOK visible light communication links,” J. Light. Technol. 34, 3768–3775 (2016).

Fan, Y.

Fu, H.

Fujii, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Ghassemlooy, Z.

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.

Goto, Y.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Haas, H.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
[Crossref]

S. Videv and H. Haas, “Practical space shift keying VLC system,” in 2014 IEEE Wirel. Commun. Netw. Conf., vol. 1 (IEEE, 2014), pp. 405–409.

Han, D.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

He, J.

Hella, M. M.

B. Fahs, A. J. Chowdhury, and M. M. Hella, “A 12-m 2. 5-Gb/s lighting compatible integrated receiver for OOK visible light communication links,” J. Light. Technol. 34, 3768–3775 (2016).

Hsu, C.-W.

Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).

Huang, C.

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.

Huang, X.

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Kamakura, K.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Y. Amano and K. Kamakura, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in 2013 IEEE Glob. Commun. Conf. (GLOBECOM), Atlanta, GA, (2013), pp. 2430–2435.
[Crossref]

Kawahito, S.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Kim, Y. H.

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics J. 7, 1–9 (2015).

Liang, K.

Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).

K. Liang, C.-W. Chow, Y. Liu, and C.-H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24, 25641 (2016).
[Crossref] [PubMed]

Liu, R.

Liu, X.

Liu, Y.

Liu, Y. F.

Liu, Y. L.

Liu, Y.-C.

Long, F.

Lu, Z.

Luo, P.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.

Minh, H. Le

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.

Mitra, R.

R. Mitra and V. Bhatia, “Precoded chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC,” IEEE Trans. Commun. 65, 4845–4856 (2017).
[Crossref]

Montes, J.

Okada, H.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Oregon, H.

R. D. Roberts and H. Oregon, “Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom),” in 22nd Wirel. Opt. Commun. Conf., (Chongqing, 2013), pp. 645–648.

Png, L. C.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

Povey, G.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
[Crossref]

Roberts, R. D.

R. D. Roberts and H. Oregon, “Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom),” in 22nd Wirel. Opt. Commun. Conf., (Chongqing, 2013), pp. 645–648.

Shi, J.

Shiu, R.-J.

Takai, I.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Tang, X.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.

Tian, P.

Tsai, H.-M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.

Tsang, H. K.

Underwood, I.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
[Crossref]

Videv, S.

S. Videv and H. Haas, “Practical space shift keying VLC system,” in 2014 IEEE Wirel. Commun. Netw. Conf., vol. 1 (IEEE, 2014), pp. 405–409.

Wang, H.

Wang, Z.

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.

Wei, L.-Y.

Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).

Wei, Y.

Yamazato, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Yang, Z.

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Yeh, C. H.

Yeh, C.-H.

Yendo, T.

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

Zhang, J.

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.

Zhang, M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

Zhang, Q.

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.

Zhao, Y.

IEEE Photonics J. (5)

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics J. 7, 1–9 (2015).

Y. Liu, K. Liang, H.-Y. Chen, L.-Y. Wei, C.-W. Hsu, C.-W. Chow, and C.-H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8, 1–7 (2016).

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5, 6801418 (2013).
[Crossref]

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics J. 8, 1–17 (2016).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics J. 7, 1–12 (2015).

IEEE Trans. Commun. (1)

R. Mitra and V. Bhatia, “Precoded chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC,” IEEE Trans. Commun. 65, 4845–4856 (2017).
[Crossref]

J. Light. Technol. (2)

B. Fahs, A. J. Chowdhury, and M. M. Hella, “A 12-m 2. 5-Gb/s lighting compatible integrated receiver for OOK visible light communication links,” J. Light. Technol. 34, 3768–3775 (2016).

R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Light. Technol. 34, 4121–4127 (2016).
[Crossref]

Opt. Express (6)

Other (6)

Y. Amano and K. Kamakura, “Alamouti-type coding for visible light communication based on direct detection using image sensor,” in 2013 IEEE Glob. Commun. Conf. (GLOBECOM), Atlanta, GA, (2013), pp. 2430–2435.
[Crossref]

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can afford: Light-weight indoor positioning with visible light,” in Proc. 13th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’15, (ACM Press, New York, New York, USA, 2015), p. 465.

R. D. Roberts and H. Oregon, “Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom),” in 22nd Wirel. Opt. Commun. Conf., (Chongqing, 2013), pp. 645–648.

P. Luo, Z. Ghassemlooy, H. Le Minh, X. Tang, and H.-M. Tsai, “Undersampled phase shift ON-OFF keying for camera communication,” in), 2014 Sixth Int. Conf. Wirel. Commun. Signal Process., (IEEE, 2014), pp. 1–6.

S. Videv and H. Haas, “Practical space shift keying VLC system,” in 2014 IEEE Wirel. Commun. Netw. Conf., vol. 1 (IEEE, 2014), pp. 405–409.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in), 2012 IEEE Globecom Work., (IEEE, 2012), pp. 1244–1248.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Block diagram of the transmitter and the receiver. (b) Transmitted data bits and the corresponding modulated waveforms for T1 and T2.
Fig. 2
Fig. 2 Data bit ’0′ represented by 1 KHz waveform and data bit ’1’ represented by 125 Hz waveform being sampled using 1/250 shutter. (a) Data bit ’0’ sampled between 4–8 ms. (b) Data bit ’0’ sampled between 10–14 ms. (c) Data bit ’1’ sampled between 2–6 ms, resulting in 50% intensity of T1 and 100% intensity of T2. (d) Data bit ’1’ sampled between 12–16 ms, resulting in 0% intensity of T1 and 50% intensity of T2.
Fig. 3
Fig. 3 Framing structure for the transmitted data.
Fig. 4
Fig. 4 Implemented architecture for packet framing and data transmission.
Fig. 5
Fig. 5 Block diagram of adaptive threshold decoding algorithm.
Fig. 6
Fig. 6 Part of the received data (grayscale) at a communication distance of 140 m using ISO 800. (a) Transmitter T1. (b) Transmitter T2.
Fig. 7
Fig. 7 (a) Transmitter T1 and T2 captured by the receiver at a distance of 130 m under different ISO settings. (b) Transmitter T1 and T2 representing packet header, data bit ’1′ and data bit ’0’ at different instants of time.
Fig. 8
Fig. 8 (a) Experimental setup in an indoor environment. (b) BER plotted against distance under different ISO settings (indoors).
Fig. 9
Fig. 9 Received data showing the effect of variable frame rate on pixel intensities. (a) 70 m under ISO 400. (b) 120 m under ISO 800. (c) 160 m under ISO 400.
Fig. 10
Fig. 10 (a) Experimental setup in an outdoor environment. (b) BER plotted against distance under different ISO settings (outdoors).

Tables (2)

Tables Icon

Table 1 Transceiver parameters

Tables Icon

Table 2 Performance comparison of image sensor-based undersampled VLC links

Metrics