Abstract

An active multifunctional terahertz modulator based on plasmon-induced transparency (PIT) metasurface under the effect of external infrared light was investigated theoretically and experimentally. A distinct transparency window, which resulted from the near-field coupling between two resonators, could be observed in the transmission spectra. Experimental results showed a phenomenon infrared light induced blue shift on the both resonator with increasing optical powers. When the optical power was tuned from 0 mW to 400 mW, the amplitude tunability of transmission at transparency window reached to 34.01%, much larger than that at the two resonance frequencies. Moreover, the phase tunability of the transmission at 0.98 THz reached to 31.35%. Meanwhile, the amplitude variation was limited to 10%. Furthermore, a coupled Lorentz oscillator model was adopted to analyze the near-field interaction of the resonances. Experimental results were in good agreement with the analytical fitting results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multispectral plasmon induced transparency based on graphene metamaterials

Chen Sun, Jiangnan Si, Zhewei Dong, and Xiaoxu Deng
Opt. Express 24(11) 11466-11474 (2016)

Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings

Mingli Wan, Yueli Song, Liufang Zhang, and Fengqun Zhou
Opt. Express 23(21) 27361-27368 (2015)

Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface

Zhewei Dong, Chen Sun, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(11) 12251-12259 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).
  2. Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
    [Crossref] [PubMed]
  3. L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335 (2017).
    [Crossref]
  4. G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
    [Crossref]
  5. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  6. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  7. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  8. Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
    [Crossref] [PubMed]
  9. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  10. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).
  11. X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
    [Crossref]
  12. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
    [Crossref] [PubMed]
  13. J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
    [Crossref]
  14. X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).
  15. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  16. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  17. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [Crossref]
  18. X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
    [Crossref]
  19. W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
    [Crossref]
  20. L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
    [Crossref]
  21. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  23. R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
    [Crossref]
  24. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  25. Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
    [Crossref] [PubMed]
  26. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  27. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  28. Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
    [Crossref]
  29. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [Crossref] [PubMed]
  30. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  31. N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
    [Crossref] [PubMed]
  32. M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
    [Crossref] [PubMed]
  33. E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
    [Crossref]
  34. J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
    [Crossref]
  35. D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
    [Crossref] [PubMed]
  36. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  37. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
    [Crossref]
  38. R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
    [Crossref] [PubMed]
  39. K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
    [Crossref] [PubMed]
  40. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  41. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  42. X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
    [Crossref] [PubMed]
  43. G. Yao, F. Ling, J. Yue, Q. Luo, and J. Yao, “Dynamically tunable graphene plasmon-induced transparency in the terahertz region,” J. Lightwave Technol. 34, 3937–3942 (2016).

2018 (13)

R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (4)

2015 (4)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

2014 (2)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

2013 (2)

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

2012 (5)

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2011 (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

2009 (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (2)

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Adato, R.

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Altug, H.

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Arora, P.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Averitt, R. D.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bai, G. D.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Bao, L.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Barash, Y.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Cai, G.

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Castro Neto, A. H.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, K.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Chen, L.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Chen, Y.

Cheng, L.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Cheong, S. A.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Chia, E. E.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Choi, J. W.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Chu, Q.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cui, T. J.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Du, L.-H.

Duan, G.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fainman, Y.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Fan, K.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, J.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, J.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hentschel, M.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hong, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hong, W.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Hong, Z.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, J.

Huang, L.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Iqbal, S.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Jeong, Y. G.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Jing, H. B.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Jones, A. C.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kim, B. J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kim, D. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kim, H. T.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Kyoung, J. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Lai, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Lang, T.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

La-o-Vorakiat, C.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Leaw, J.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Levy, U.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Li, B.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Li, H.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Li, J.

Li, R.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Li, S.

Li, Y.

Li, Z. Y.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Ling, F.

Ling, Y.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, C.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, Q.

Liu, Q. H.

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

Liu, T.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Liu, W.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Liu, X.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Liu, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Loh, K. P.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Luan, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Luo, F.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Luo, L.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Luo, Q.

Luo, W.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Luo, Z.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Ma, Q.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Ma, R.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Metcalfe, G. D.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ouyang, C.

Padilla, W. J.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, N.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Qin, S.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Rang, M.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Raschke, M. B.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Rhie, J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Schalch, J.

Seren, H. R.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shang, J.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Shen, C.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, G.

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smalley, J. S. T.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Song, Z.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Stern, L.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, C.

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

Su, H.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Talker, E.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Tan, Y.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Taubert, R.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, Z.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Vallini, F.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, G.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Wang, K.

Wang, W.

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wiley, B. J.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Won, R.

R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

Wraback, M.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Wu, C.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Wu, D.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Wu, H. T.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Wu, N.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Wu, R. Y.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Xie, Y.-S.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Xu, Q.

Xu, X.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Yang, C.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Yanik, A. A.

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Yao, G.

Yao, J.

Ye, H.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Ye, L.

Ye, Y.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Yu, L.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Yu, T.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Yu, Y.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Yu, Z.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Yue, J.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, G. F.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Zhang, H. C.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Zhang, J.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, L.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Zhang, N.

Zhang, S.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X. A.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Zhao, J.-H.

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zhao, X.

Zheng, X.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Zhu, J. X.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Zhu, L.-G.

Zhu, M.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zou, X.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Adv. Mater. (1)

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

Adv. Opt. Photonics (1)

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

IEEE T. Microw. Theory (1)

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Nano Lett. (4)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Nanoscale (2)

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Physica B (1)

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. Rep. (1)

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Sensors and Actuat. A: Phys. (1)

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The schematic of an efficient light modulator based on a frequency-selective tunable terahertz metasurface. The sample size was 15 mm*15mm. (b) the OM image of the sample when the photo-resist was lift off. (c) Geometry of the unit-cell of the metasurface with parameters: L1 = 120 um, L2 = 80 um, h1 = 30 um, h2 = 25 um, a = 30 um, g = w = 5um. Metal thickness for the metasurface: d = 100 nm (5 nm Ti + 95 nm Al).
Fig. 2
Fig. 2 Simulated and measured transmission spectra of terahertz metasurface. (a) and (b) are simulated transmission spectra for the bottom and the upper half of the metasurface, respectively. (b) and (e) are simulated and measured transmission spectra of the metasurface when terahertz wave is horizontal polarized, respectively. (c) and (f) are simulated and measured transmission spectra of the metasurface when terahertz wave is vertically polarized.
Fig. 3
Fig. 3 (a), (b)and (c) are the simulated electric field distribution of the metasurface in the frequency of 0.68 THz, 0.79 THz and 0.98 THz, respectively. (d), (e), and (f) are the simulated surface charge density of the metasurface in the frequency of 0.68 THz and 0.98 THz, respectively.
Fig. 4
Fig. 4 (a) Transmission spectra of the metasurface with infrared light off and on. When the infrared light was illuminated on the metasurface, the value of optical power was 400 mW. (b) Transmission tunability of the metasurface-as function of optical powers at 0.68 THz, 0.79 THz and 0.98 THz, respectively.
Fig. 5
Fig. 5 (a) Amplitude of the measured transmission of the metasurface in frequency spectra with different powers of the infrared light. (b) Plotted the resonance frequency of the metasurface with increasing optical powers. (c) Variation of the transmission amplitude as function of optical powers at the resonances, and the peak, respectively. (d) Phase of the measured transmission of the metasurface in frequency spectra with different powers of infrared light. (e) Phase of the transmission of the metasurface at 0.98 THz with different optical powers. (f) Dielectric constant of the Si substrate with different powers of infrared light at 0.4 THz, Re(ε) represented the real part of the complex dielectric constant, Im(ε) represented the imaginary part of the complex dielectric constant
Fig. 6
Fig. 6 Experimental and theoretical transmission spectra of the metasurface when the optical powers are (a) 0 mW, (b) 100 mW, (c) 200 mW, and (d) 300 mW, respectively.
Fig. 7
Fig. 7 Values of γ1, γ2, δ and κ were extracted by fitting the numerical transmission spectra. In addition, The unit of κ is THz2.
Fig. 8
Fig. 8 Transmission properties depended on incident angular: (a) for TM polarization and (b) For TE polarization, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε= ε w p 2 w 2 +iwγ ,
χ ¨ 1 + γ 1 χ ˙ 1 + ω 2 0 χ 1 +κ χ 2 =gE, χ ¨ 2 + γ 2 χ ˙ 2 + ( ω 0 +δ) 2 χ 2 +κ χ 1 =0.
| t ˜ |=| c(1+ n s )/ [c(1+ n s )iω χ ˜ e ] |,

Metrics