Abstract

Computational ghost imaging (CGI) can build a three-dimensional (3D) image using the reconstructed shading images. However, it could be easily affected by the noise accumulated in the 3D reconstruction. More importantly, the selection of initial growing position will also affect the quality of the formed 3D image significantly. In this paper, we apply the technique of sub-pixel displacement to achieve smooth shading images in noisy environments and propose a method for selecting the optimal initial growing position to preserve the stereo feature of the object. We demonstrate that the surfaces of the reconstructed 3D images are more accurate using our proposed method as compared to the ones achieved by previously used methods. Our research would promote the development of 3D imaging using CGI in noisy environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Underwater computational ghost imaging

Mingnan Le, Gao Wang, Huabin Zheng, Jianbin Liu, Yu Zhou, and Zhuo Xu
Opt. Express 25(19) 22859-22868 (2017)

Noise reduction in computational ghost imaging by interpolated monitoring

Zhaohua Yang, Yuzhe Sun, Shaofan Qu, Yuanjin Yu, Ruitao Yan, Ai-Xin Zhang, and Ling-An Wu
Appl. Opt. 57(21) 6097-6101 (2018)

Adaptive compressive ghost imaging based on wavelet trees and sparse representation

Wen-Kai Yu, Ming-Fei Li, Xu-Ri Yao, Xue-Feng Liu, Ling-An Wu, and Guang-Jie Zhai
Opt. Express 22(6) 7133-7144 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “”two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  3. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [Crossref]
  4. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
    [Crossref]
  5. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  6. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2008).
  7. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]
  8. S. C. Song, M. J. Sun, and L. A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
    [Crossref]
  9. B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.
  10. K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
    [Crossref]
  11. M. J. Sun, M. F. Li, and L. A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494 (2015).
    [Crossref] [PubMed]
  12. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
    [Crossref]
  13. D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
    [Crossref]
  14. S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
    [Crossref]
  15. L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).
  16. Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
    [Crossref]
  17. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  18. W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Reports 5, 9280 (2015).
    [Crossref]
  19. E. Salvador-Balaguer, P. Latorre-Carmona, C. Chabert, F. Pla, J. Lancis, and E. Tajahuerce, “Low-cost single-pixel 3D imaging by using an LED array,” Opt. Express 26, 15623–15631 (2018).
    [Crossref]
  20. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  21. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
    [Crossref]
  22. W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
    [Crossref]
  23. N. J. Sloane and M. Harwit, “Masks for hadamard transform optics, and weighing designs,” Appl. Opt. 15, 107 (1976).
    [Crossref] [PubMed]

2018 (2)

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

E. Salvador-Balaguer, P. Latorre-Carmona, C. Chabert, F. Pla, J. Lancis, and E. Tajahuerce, “Low-cost single-pixel 3D imaging by using an LED array,” Opt. Express 26, 15623–15631 (2018).
[Crossref]

2017 (2)

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

2016 (5)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

S. C. Song, M. J. Sun, and L. A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

2015 (2)

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Reports 5, 9280 (2015).
[Crossref]

M. J. Sun, M. F. Li, and L. A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494 (2015).
[Crossref] [PubMed]

2013 (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

2012 (2)

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
[Crossref]

2010 (1)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

2008 (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2008).

2004 (1)

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “”two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

1976 (1)

1969 (1)

W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Andrews, H. C.

W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Barnett, S. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “”two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “”two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Boyd, R. W.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “”two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2008).

Chabert, C.

Chen, N.

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Cheng, J.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

Du, G.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Edgar, M.

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Edgar, M. P.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Fujiu, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Gibson, G. G.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

Gong, W.

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Reports 5, 9280 (2015).
[Crossref]

Han, S.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Reports 5, 9280 (2015).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

Harwit, M.

Hashimoto, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Horisaki, R.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Huang, B.

K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
[Crossref]

Kamesawa, R.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Kane, J.

W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2008).

Kawamura, Y.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lancis, J.

Latorre-Carmona, P.

Li, G.

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Li, M. F.

Lu, R.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Luo, K. H.

K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Meng, L.

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Ota, S.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Padgett, M.

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Padgett, M. J.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

Phillips, D. B.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Pla, F.

Pratt, W.

W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Radwell, N.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Salvador-Balaguer, E.

Sato, I.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Setoyama, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Shapiro, J. H.

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2008).

Situ, G.

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Sloane, N. J.

Song, S. C.

S. C. Song, M. J. Sun, and L. A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Sun, B.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892–16901 (2012).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Sun, M. J.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

S. C. Song, M. J. Sun, and L. A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

M. J. Sun, M. F. Li, and L. A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494 (2015).
[Crossref] [PubMed]

Tajahuerce, E.

Taylor, J. M.

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

Ugawa, M.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Vittert, L.

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wang, H.

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Wang, W.

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Welsh, S. S.

Wu, L. A.

S. C. Song, M. J. Sun, and L. A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

M. J. Sun, M. F. Li, and L. A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54, 7494 (2015).
[Crossref] [PubMed]

K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
[Crossref]

Xiao, T.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Xie, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Yamaguchi, S.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

Yu, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

Zheng, W. M.

K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
[Crossref]

Zhu, D.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Appl. Opt. (2)

Chin. Phys. Lett. (1)

K. H. Luo, B. Huang, W. M. Zheng, and L. A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29(5), 74216–74220 (2012).
[Crossref]

J. Opt. (1)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3D single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

Nat. Commun. (1)

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Opt. Commun. (1)

S. C. Song, M. J. Sun, and L. A. Wu, “Improving the signal-to-noise ratio of thermal ghost imaging based on positive negative intensity correlation,” Opt. Commun. 366, 8–12 (2016).
[Crossref]

Opt. Express (3)

Phys. Rev. A (3)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2008).

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Phys. Rev. Lett. (4)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “”two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Proc. IEEE (1)

W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57, 58–68 (1969).
[Crossref]

Sci Rep (1)

L. Meng, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci Rep 717865 (2017).

Sci. Adv. (1)

D. B. Phillips, M. J. Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. G. Gibson, and M. J. Padgett, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3e1601782 (2017).
[Crossref]

Sci. Reports (1)

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Reports 5, 9280 (2015).
[Crossref]

Science (2)

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, and K. Fujiu, “Ghost cytometry,” Science 360, 1246–1251 (2018).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Other (1)

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Computational Optical Sensing and Imaging, (Optical Society of America, 2013), pp. CTu1C–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic of experiment setup. The light projector illuminates the object with computer generated patterns. The three bucket detectors which are marked as left, up, right respectively, are located at (−165, 79.5, −325), (0, −203.5, −325), (165, 79.5, −325) in the unit of millimeter. The 2D shading images in the box with dash line are obtained from three bucket detectors respectively.
Fig. 2
Fig. 2 The SPD-based image reconstruction method. The low-resolution image IOP is obtained by using the patterns with the resolution of M 2 × M 2, then the patterns are shifted to right, bottom, and bottom right by half a pixel (as shown in left side) to get the low-resolution images IRP, IBP, and IDP as shown in right side.
Fig. 3
Fig. 3 (a)–(f)(j)–(o) when the noise is n4, 2D shading images from three bucket detectors obtained by SPD and NHR-C respectively. (g)–(i)(p)–(r) SNR curves of images reconstructed by SPD and NHR-C at different noise levels.
Fig. 4
Fig. 4 (a)(h) Objects; (b)–(d)(i)–(k) 3D reconstruction results using NHR-C with different noise for face#1-model and face#2-model respectively; (e)–(g)(l)–(n) 3D reconstruction results using SPD with different noise for face#1-model and face#2-model respectively.
Fig. 5
Fig. 5 The flow chart of selection of OIGP. (a) Images of parameters p and q; (b) The image of Gpq; (c) The image of v with the selected candidate positions marked in yellow; (d) The selected OIGP.
Fig. 6
Fig. 6 (a)(f) 2D shading images by NHR-C; (b)(g) 3D reconstruction results with OIGP by NHR-C; (c)–(e), (h)–(j) 3D reconstruction results with random IGPs by NHR-C.
Fig. 7
Fig. 7 (a)(k) Error probe fluctuation; (b)–(d)(l)–(n) SPD and OIGP in different noise conditions (n0, n2, n4); (e)–(g)(o)–(q) SPD in different noise conditions (n0, n2, n4); (h)–(j)(r)–(t) NHR-C and OIGP in different noise conditions (n0, n2, n4).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G k ( x , y ) = s i k p i ( x , y ) s i k p i ( x , y ) ,
I k ( x , y ) = I s α ( d k n ) ,
n = 1 I s α ( D 1 I ) ,
p = z x = n x n z , q = z y = n y n z ,
I SPD = 1 4 ( I OP + I BP + I RP + I DP ) .
κ = 1 16 [ 1 2 1 2 4 2 1 2 1 ] ,
SNR = 2 × ( I f I b ) σ f + σ b ,
G p q = | p x | + | p y | + | q x | + | q y |
v ( t ) ( x , y ) = 1 9 i = 0 , j = 0 i = 2 , j = 2 G p q ( x + t + i , y + t + j ) ,

Metrics