Abstract

Considering the high complexity of local dimming backlight that is necessary to effectively suppress color breakups for field sequential color liquid crystal displays (FSC-LCDs), a global dimming-based solution is proposed. This solution involves considering that the color breakups mainly occur at object edges of an image. By introducing an algorithm to present the edge information in a single field, evaluating color breakup performances, and experimentally verifying based on a 240-Hz LCD, lighter color breakups are revealed compared with mainstream local dimming-based solutions. Therefore, the proposed solution can achieve FSC-LCDs with better performance and practicality for advanced display applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High dynamic range liquid crystal displays with a mini-LED backlight

Guanjun Tan, Yuge Huang, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 26(13) 16572-16584 (2018)

Optimized blue-phase liquid crystal for field-sequential-color displays

Yuge Huang, Haiwei Chen, Guanjun Tan, Hitoshi Tobata, Shin-ichi Yamamoto, Eiji Okabe, Yi-Fen Lan, Cheng-Yeh Tsai, and Shin-Tson Wu
Opt. Mater. Express 7(2) 641-650 (2017)

Edge-lit LCD backlight unit for 2D local dimming

Gun-Wook Yoon, Seok-Won Bae, Yong-Bok Lee, and Jun-Bo Yoon
Opt. Express 26(16) 20802-20812 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Hasebe and S. Kobayashi, “A full-color field sequential LCD using modulated backlight,” SID Symp. Dig. Tech. 16, 81–83 (1985).
  2. Y. Huang, H. Chen, G. Tan, H. Tobata, S. I. Yamamoto, E. Okabe, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Optimized blue-phase liquid crystal for field sequential-color displays,” Opt. Mater. Express 7(2), 641–650 (2017).
    [Crossref]
  3. K.-S. Peng, F.-C. Lin, and K.-T. Teng, “Efficient image resolution enhancement using edge-directed unsharp masking sharpening for a real-time ASIC application,” J. Comput. Sci. Syst. Biol. 8(3), 174–184 (2015).
    [Crossref]
  4. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  5. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S.-T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  6. F. Gou, H. Chen, M.-C. Li, S.-L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
    [Crossref] [PubMed]
  7. T. Järvenpää, “Measuring color breakup of stationary images in field-sequential-color displays,” J. Soc. Inf. Disp. 13(2), 139–144 (2005).
    [Crossref]
  8. F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
    [Crossref]
  9. F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
    [Crossref]
  10. F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Color breakup reduction by 180Hz stencil-FSC method in large-sized color filter-less LCDs,” J. Disp. Technol. 6(3), 107–112 (2010).
    [Crossref]
  11. F.-C. Lin, Y. Zhang, and E. H. A. Langendijk, “Color breakup suppression by local primary desaturation in field-sequential color LCDs,” J. Disp. Technol. 7(2), 55–61 (2011).
    [Crossref]
  12. Y. Zhang, F.-C. Lin, and E. H. A. Langendijk, “A field-sequential-color display with a local-primary-desaturation backlight scheme,” J. Soc. Inf. Disp. 19(3), 242–248 (2011).
    [Crossref]
  13. F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
    [Crossref]
  14. G. Tan, Y. Huang, M.-C. Li, S.-L. Lee, and S.-T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
    [Crossref] [PubMed]
  15. H. Chen, R. Zhu, M.-C. Li, S.-L. Lee, and S.-T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
    [Crossref] [PubMed]
  16. F.-C. Lin, K.-T. Teng, C.-W. Chang, C.-H. Lin, Y.-P. Huang, and H.-P. D. Shieh, “15-2: Effective color breakup suppression by a low-cost global dimming backlight for field-sequential-color displays,” SID Symp. Dig. Tech. 47(1), 171–174 (2016).
    [Crossref]
  17. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359(1), 381–400 (1985).
    [Crossref] [PubMed]
  18. A. P. Papliński, “Directional filtering in edge detection,” IEEE Trans. Image Process. 7(4), 611–615 (1998).
    [Crossref] [PubMed]
  19. Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
    [Crossref]
  20. Y.-J. Lin, Z. Qin, F.-C. Lin, H.-P. D. Shieh, and Y.-P. Huang, “85-3: Distinguished Student Paper: Image-content-adaptive color breakup index for field-sequential-color displays using dominant visual saliency method,” SID Symp. Dig. Tech. 49(1), 1159–1162 (2018).
    [Crossref]
  21. Z. Qin, “Color Breakup Image Database,” figshare (2018) [retrieved 1 Nov 2018], https://doi.org/10.6084/m9.figshare.7223039 .
  22. F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
    [Crossref]

2018 (2)

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

G. Tan, Y. Huang, M.-C. Li, S.-L. Lee, and S.-T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (1)

2015 (2)

F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
[Crossref]

K.-S. Peng, F.-C. Lin, and K.-T. Teng, “Efficient image resolution enhancement using edge-directed unsharp masking sharpening for a real-time ASIC application,” J. Comput. Sci. Syst. Biol. 8(3), 174–184 (2015).
[Crossref]

2011 (3)

F.-C. Lin, Y. Zhang, and E. H. A. Langendijk, “Color breakup suppression by local primary desaturation in field-sequential color LCDs,” J. Disp. Technol. 7(2), 55–61 (2011).
[Crossref]

Y. Zhang, F.-C. Lin, and E. H. A. Langendijk, “A field-sequential-color display with a local-primary-desaturation backlight scheme,” J. Soc. Inf. Disp. 19(3), 242–248 (2011).
[Crossref]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
[Crossref] [PubMed]

2010 (2)

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Color breakup reduction by 180Hz stencil-FSC method in large-sized color filter-less LCDs,” J. Disp. Technol. 6(3), 107–112 (2010).
[Crossref]

2009 (1)

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

2005 (1)

T. Järvenpää, “Measuring color breakup of stationary images in field-sequential-color displays,” J. Soc. Inf. Disp. 13(2), 139–144 (2005).
[Crossref]

1998 (1)

A. P. Papliński, “Directional filtering in edge detection,” IEEE Trans. Image Process. 7(4), 611–615 (1998).
[Crossref] [PubMed]

1985 (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359(1), 381–400 (1985).
[Crossref] [PubMed]

Chang, C.-W.

F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
[Crossref]

Chen, H.

Gou, F.

F. Gou, H. Chen, M.-C. Li, S.-L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
[Crossref] [PubMed]

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Huang, Y.

Huang, Y. P.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Huang, Y.-P.

F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
[Crossref]

F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Color breakup reduction by 180Hz stencil-FSC method in large-sized color filter-less LCDs,” J. Disp. Technol. 6(3), 107–112 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Järvenpää, T.

T. Järvenpää, “Measuring color breakup of stationary images in field-sequential-color displays,” J. Soc. Inf. Disp. 13(2), 139–144 (2005).
[Crossref]

Kuo, C. W.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Lan, Y. F.

Langendijk, E. H. A.

F.-C. Lin, Y. Zhang, and E. H. A. Langendijk, “Color breakup suppression by local primary desaturation in field-sequential color LCDs,” J. Disp. Technol. 7(2), 55–61 (2011).
[Crossref]

Y. Zhang, F.-C. Lin, and E. H. A. Langendijk, “A field-sequential-color display with a local-primary-desaturation backlight scheme,” J. Soc. Inf. Disp. 19(3), 242–248 (2011).
[Crossref]

Lee, S. L.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Lee, S.-L.

Lee, Y. H.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Li, M. C.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Li, M.-C.

Lin, C. H.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Lin, F. C.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Lin, F.-C.

F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
[Crossref]

K.-S. Peng, F.-C. Lin, and K.-T. Teng, “Efficient image resolution enhancement using edge-directed unsharp masking sharpening for a real-time ASIC application,” J. Comput. Sci. Syst. Biol. 8(3), 174–184 (2015).
[Crossref]

F.-C. Lin, Y. Zhang, and E. H. A. Langendijk, “Color breakup suppression by local primary desaturation in field-sequential color LCDs,” J. Disp. Technol. 7(2), 55–61 (2011).
[Crossref]

Y. Zhang, F.-C. Lin, and E. H. A. Langendijk, “A field-sequential-color display with a local-primary-desaturation backlight scheme,” J. Soc. Inf. Disp. 19(3), 242–248 (2011).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Color breakup reduction by 180Hz stencil-FSC method in large-sized color filter-less LCDs,” J. Disp. Technol. 6(3), 107–112 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Lin, Y. J.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359(1), 381–400 (1985).
[Crossref] [PubMed]

Nakamura, J.

Okabe, E.

Paplinski, A. P.

A. P. Papliński, “Directional filtering in edge detection,” IEEE Trans. Image Process. 7(4), 611–615 (1998).
[Crossref] [PubMed]

Peng, F.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Peng, K.-S.

K.-S. Peng, F.-C. Lin, and K.-T. Teng, “Efficient image resolution enhancement using edge-directed unsharp masking sharpening for a real-time ASIC application,” J. Comput. Sci. Syst. Biol. 8(3), 174–184 (2015).
[Crossref]

Qin, Z.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Shieh, H. P. D.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Shieh, H.-P. D.

F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
[Crossref]

F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Color breakup reduction by 180Hz stencil-FSC method in large-sized color filter-less LCDs,” J. Disp. Technol. 6(3), 107–112 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Sugiura, N.

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Tabiryan, N. V.

Takaki, Y.

Tan, G.

Tanaka, K.

Teng, K.-T.

K.-S. Peng, F.-C. Lin, and K.-T. Teng, “Efficient image resolution enhancement using edge-directed unsharp masking sharpening for a real-time ASIC application,” J. Comput. Sci. Syst. Biol. 8(3), 174–184 (2015).
[Crossref]

Tobata, H.

Tsai, C. Y.

Wand, M.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Wei, C.-M.

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Weng, Y.

Wu, S. T.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. I. Yamamoto, E. Okabe, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Optimized blue-phase liquid crystal for field sequential-color displays,” Opt. Mater. Express 7(2), 641–650 (2017).
[Crossref]

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Wu, S.-T.

Xu, D.

Yamamoto, S. I.

Zhang, Y.

Y. Zhang, F.-C. Lin, and E. H. A. Langendijk, “A field-sequential-color display with a local-primary-desaturation backlight scheme,” J. Soc. Inf. Disp. 19(3), 242–248 (2011).
[Crossref]

F.-C. Lin, Y. Zhang, and E. H. A. Langendijk, “Color breakup suppression by local primary desaturation in field-sequential color LCDs,” J. Disp. Technol. 7(2), 55–61 (2011).
[Crossref]

Zhu, R.

IEEE Trans. Image Process. (1)

A. P. Papliński, “Directional filtering in edge detection,” IEEE Trans. Image Process. 7(4), 611–615 (1998).
[Crossref] [PubMed]

J. Appl. Phys. (1)

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

J. Comput. Sci. Syst. Biol. (1)

K.-S. Peng, F.-C. Lin, and K.-T. Teng, “Efficient image resolution enhancement using edge-directed unsharp masking sharpening for a real-time ASIC application,” J. Comput. Sci. Syst. Biol. 8(3), 174–184 (2015).
[Crossref]

J. Disp. Technol. (4)

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential- color method,” J. Disp. Technol. 6(3), 98–106 (2010).
[Crossref]

F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Color breakup reduction by 180Hz stencil-FSC method in large-sized color filter-less LCDs,” J. Disp. Technol. 6(3), 107–112 (2010).
[Crossref]

F.-C. Lin, Y. Zhang, and E. H. A. Langendijk, “Color breakup suppression by local primary desaturation in field-sequential color LCDs,” J. Disp. Technol. 7(2), 55–61 (2011).
[Crossref]

F.-C. Lin, C.-W. Chang, Y.-P. Huang, and H.-P. D. Shieh, “High-image reproduction by the low-field-rate stencil-LPD method for field-sequential-color LCDs,” J. Disp. Technol. 11(12), 1069–1075 (2015).
[Crossref]

J. Physiol. (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359(1), 381–400 (1985).
[Crossref] [PubMed]

J. Soc. Inf. Disp. (4)

Z. Qin, Y. J. Lin, F. C. Lin, C. W. Kuo, C. H. Lin, N. Sugiura, H. P. D. Shieh, and Y. P. Huang, “Image content adaptive color breakup index for field sequential color displays using a dominant visual saliency method,” J. Soc. Inf. Disp. 26(2), 85–97 (2018).
[Crossref]

Y. Zhang, F.-C. Lin, and E. H. A. Langendijk, “A field-sequential-color display with a local-primary-desaturation backlight scheme,” J. Soc. Inf. Disp. 19(3), 242–248 (2011).
[Crossref]

T. Järvenpää, “Measuring color breakup of stationary images in field-sequential-color displays,” J. Soc. Inf. Disp. 13(2), 139–144 (2005).
[Crossref]

F.-C. Lin, Y.-P. Huang, C.-M. Wei, and H.-P. D. Shieh, “Color-breakup suppression and low-power consumption by using the stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Other (4)

H. Hasebe and S. Kobayashi, “A full-color field sequential LCD using modulated backlight,” SID Symp. Dig. Tech. 16, 81–83 (1985).

F.-C. Lin, K.-T. Teng, C.-W. Chang, C.-H. Lin, Y.-P. Huang, and H.-P. D. Shieh, “15-2: Effective color breakup suppression by a low-cost global dimming backlight for field-sequential-color displays,” SID Symp. Dig. Tech. 47(1), 171–174 (2016).
[Crossref]

Y.-J. Lin, Z. Qin, F.-C. Lin, H.-P. D. Shieh, and Y.-P. Huang, “85-3: Distinguished Student Paper: Image-content-adaptive color breakup index for field-sequential-color displays using dominant visual saliency method,” SID Symp. Dig. Tech. 49(1), 1159–1162 (2018).
[Crossref]

Z. Qin, “Color Breakup Image Database,” figshare (2018) [retrieved 1 Nov 2018], https://doi.org/10.6084/m9.figshare.7223039 .

Supplementary Material (1)

NameDescription
» Dataset 1       An image database dedicated to color breakup evaluation, which contains 25 FHD references images that cover various image content.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Lily image with color breakups produced by the traditional RGB driving method: (b) an edge region magnified; (c) a non-edge region magnified.
Fig. 2
Fig. 2 Backlight signal determination using the proposed method: (a) target image; (b) edge intensity map and detected edges; (c) backlight signal determined by averaging the edges.
Fig. 3
Fig. 3 Four fields produced by the proposed method for the Blossom image, including backlight signals (lower), compensated LC signals (middle), and front-of-screen field images (upper).
Fig. 4
Fig. 4 Backlight signal of the first field (left) and corresponding simulated image with color breakups (right) for the Blossom image: (a) the proposed EDGE method; (b) the global-version STENCIL method.
Fig. 5
Fig. 5 Database containing 25 reference images with various image content (numbered 1 to 25), dedicated to color breakup evaluation.
Fig. 6
Fig. 6 Calculation flow of the color breakup metric. Notations are listed as follows: CBU for color breakup, VS for visual saliency, DVS for dominant visual saliency, T for the threshold of 50%, Φ for the area of all DVS regions, ΔC* for chroma difference in CIELAB color space. Note the color fringe at the left of the image with CBU is produced by the real edge of the display panel and can be neglected as long as the display size is not too small.
Fig. 7
Fig. 7 Evaluated color breakup scores (normalized) of the EDGE, STENCIL, LPD, and RGB methods for the 25 reference images, presented as: (a) boxplots with medians and red circles indicating the scores of individual images and a (b) heatmap.
Fig. 8
Fig. 8 Simulated color breakup phenomena of Image 1 with evaluated color breakup scores.
Fig. 9
Fig. 9 Simulated color breakup phenomena of Image 8 with evaluated color breakup scores.
Fig. 10
Fig. 10 Simulated color breakup phenomena of Image 9 with evaluated color breakup scores.
Fig. 11
Fig. 11 Simulated color breakup phenomena of Image 18 (Lily) with evaluated color breakup scores. The front-of-screen field images are provided and a black field is inserted for the methods using three fields.
Fig. 12
Fig. 12 Simulated color breakup phenomena of Image 20 with evaluated color breakup scores.
Fig. 13
Fig. 13 240-Hz LCD and the camera assembled on the rotating motor
Fig. 14
Fig. 14 Color breakup phenomena of Image 18 (Lily) captured by the rotating camera, as produced by the EDGE, STENCIL, LPD, and RGB methods. Note that the power LED of the LCD is tailed (highlighted by a red circle in the right) because of the rotation of the camera while photographing.

Tables (1)

Tables Icon

Table 1 Color breakup performances of five selected images and their image characteristics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sbx=[ -1 0 1 -2 0 2 -1 0 1 ],Sby=[ 1 2 1 0 0 0 -1 -2 -1 ]
T i edge = I i B L i edge ,i=R,G,B,then T 1st edge =min( T R edge , T G edge , T B edge )
T i '= I i (B L i edge × T 1st edge ) B L i i=R,G,B

Metrics