Abstract

Taking advantage of the tunable conductivity of graphene under high terahertz (THz) electric field, a graphene-metal hybrid metamaterial consisting of an array of three adjoined orthogonally oriented split-ring resonators (SRRs) is proposed and experimentally demonstrated to show a maximum modulation depth of 23% in transmission when the THz peak field reaches 305 kV/cm. The transmission of the sample is dominated by the antisymmetric and symmetric resonant modes originating from the strong magneto-inductive and conductive coupling among the three SRRs, respectively. Numerical simulations and model calculations based on a coupled oscillator theory were performed to explain the modulation process. It is found that the graphene coating impairs the resonances by increasing the damping of the modes and decreasing the coupling between the SRRs whereas the strong THz field restores the resonances by decreasing the conductivity of graphene.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime

Shuyuan Xiao, Tingting Liu, Chaobiao Zhou, Xiaoyun Jiang, Le Cheng, and Chen Xu
J. Opt. Soc. Am. B 36(7) E48-E54 (2019)

Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial

Chenxi Liu, Peiguo Liu, Cheng Yang, Yue Lin, and Song Zha
Opt. Mater. Express 8(5) 1132-1142 (2018)

Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  2. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  3. M. R. Hashemi, S. Cakmakyapan, and M. Jarrahi, “Reconfigurable metamaterials for terahertz wave manipulation,” Rep. Prog. Phys. 80(9), 094501 (2017).
    [Crossref] [PubMed]
  4. J. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
    [Crossref]
  5. G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
    [Crossref]
  6. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
    [Crossref]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  8. Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
    [Crossref] [PubMed]
  9. M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
    [Crossref] [PubMed]
  10. M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
    [Crossref]
  11. P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
    [Crossref] [PubMed]
  12. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
    [Crossref] [PubMed]
  13. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
    [Crossref] [PubMed]
  14. W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
    [Crossref] [PubMed]
  15. G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
    [Crossref]
  16. H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
    [Crossref]
  17. H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
    [Crossref] [PubMed]
  18. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [Crossref] [PubMed]
  19. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  20. L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
    [Crossref]
  21. X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited],” Photon. Res. 4(3), A16–A21 (2016).
    [Crossref]
  22. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
    [Crossref] [PubMed]
  23. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
    [Crossref] [PubMed]
  24. W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
    [Crossref] [PubMed]
  25. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
    [Crossref] [PubMed]
  26. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
    [Crossref] [PubMed]
  27. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
    [Crossref] [PubMed]
  28. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
    [Crossref] [PubMed]
  29. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  30. Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
    [Crossref]
  31. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
    [Crossref] [PubMed]
  32. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
    [Crossref] [PubMed]
  33. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  34. T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
    [Crossref]
  35. T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
    [Crossref]
  36. S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
    [Crossref]
  37. H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
    [Crossref] [PubMed]
  38. M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
    [Crossref]
  39. H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
    [Crossref] [PubMed]
  40. M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
    [Crossref]
  41. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  42. H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
    [Crossref]
  43. M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
    [Crossref] [PubMed]
  44. J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  45. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref] [PubMed]
  46. G. Sharma, I. Al-Naib, H. Hafez, R. Morandotti, D. G. Cooke, and T. Ozaki, “Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs,” Opt. Express 20(16), 18016–18024 (2012).
    [Crossref] [PubMed]
  47. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
    [Crossref]
  48. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
    [Crossref] [PubMed]
  49. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  50. H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
    [Crossref] [PubMed]
  51. I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
    [Crossref] [PubMed]
  52. H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
    [Crossref]

2018 (13)

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

2017 (8)

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. R. Hashemi, S. Cakmakyapan, and M. Jarrahi, “Reconfigurable metamaterials for terahertz wave manipulation,” Rep. Prog. Phys. 80(9), 094501 (2017).
[Crossref] [PubMed]

J. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

2016 (4)

2015 (3)

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

2014 (4)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (4)

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

2012 (6)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

G. Sharma, I. Al-Naib, H. Hafez, R. Morandotti, D. G. Cooke, and T. Ozaki, “Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs,” Opt. Express 20(16), 18016–18024 (2012).
[Crossref] [PubMed]

2011 (2)

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

2008 (3)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

2002 (1)

Almási, G.

Almond, N. W.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Al-Naib, I.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

G. Sharma, I. Al-Naib, H. Hafez, R. Morandotti, D. G. Cooke, and T. Ozaki, “Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs,” Opt. Express 20(16), 18016–18024 (2012).
[Crossref] [PubMed]

Averitt, R. D.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited],” Photon. Res. 4(3), A16–A21 (2016).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

Azad, A. K.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Beck, M.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Beere, H. E.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Beigang, R.

Boreman, G. D.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Braeuninger-Weimer, P.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Brandt, N. C.

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

Brener, I.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Bruna, M.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

Cai, H.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cakmakyapan, S.

M. R. Hashemi, S. Cakmakyapan, and M. Jarrahi, “Reconfigurable metamaterials for terahertz wave manipulation,” Rep. Prog. Phys. 80(9), 094501 (2017).
[Crossref] [PubMed]

Cao, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Chae, S. J.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Chai, X.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Chang, Y. C.

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Chen, D.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Chen, H.-T.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Chen, S.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Chen, X.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Cheng, C.-C.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Cho, B.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Cho, J. H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, J. W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choubak, S.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Chung, D. S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Coffey, K. R.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cong, L.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Cooke, D. G.

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Degl’Innocenti, R.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Desjardins, P.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Dignam, M. M.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Du, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Duan, G.

Faist, J.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Fan, K.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited],” Photon. Res. 4(3), A16–A21 (2016).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Farhat, H.

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

Fu, W.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Fu, Z.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Fülöp, J. A.

Garcia-Pomar, J. L.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Ginn, J. C.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Gu, J.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Gundlach, D.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Ha, T.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Hafez, H.

Hafez, H. A.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Han, J.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, Y.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Hasdeo, E. H.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Hashemi, M. R.

M. R. Hashemi, S. Cakmakyapan, and M. Jarrahi, “Reconfigurable metamaterials for terahertz wave manipulation,” Rep. Prog. Phys. 80(9), 094501 (2017).
[Crossref] [PubMed]

He, H.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

He, J.

J. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

He, X.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Hebling, J.

Heo, E.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Hofmann, S.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Hou, B.

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Hsu, A. L.

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

Hu, C.

Hu, X.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Huang, J.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Huang, Q.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Hwang, H. Y.

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Ijäs, M.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

In, C.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Jarrahi, M.

M. R. Hashemi, S. Cakmakyapan, and M. Jarrahi, “Reconfigurable metamaterials for terahertz wave manipulation,” Rep. Prog. Phys. 80(9), 094501 (2017).
[Crossref] [PubMed]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Jessop, D. S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Jo, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Jung, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Kamboj, V. S.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Kang, M. S.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Karl, N.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Kawata, S.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Keiser, G. R.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Kenney, M.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Kidambi, P. R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Kim, H.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Kim, H. D.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Kim, J.

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Kim, S.

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Kim, T. T.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kindness, S. J.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Kong, J.

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

Koo, J.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Kozma, I.

Krishnamoorthy, H. N. S.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

Kuhl, J.

Kumamoto, Y.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Kumar, A.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
[Crossref]

Lee, B.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

Lee, C.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Lee, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, W.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

Lee, Y. H.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Lee, Y.-S.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Levesque, P. L.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Li, L.-J.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Li, Q.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Li, W.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liang, X.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Lim, S.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Lim, S. C.

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Lim, W. X.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Liu, H.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref] [PubMed]

Liu, H.-L.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Liu, M.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Liu, P.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Lu, J.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref] [PubMed]

Lu, Y.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

MacDonald, K. F.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Maeng, I.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Maissen, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Manjappa, M.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Martel, R.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

Metcalfe, G. D.

Michailow, W.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Min, B.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Minot, E. D.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Mittleman, D. M.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Morandotti, R.

Mousavian, A.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

Nees, J. A.

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Nelson, K. A.

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

Nguyen, V. L.

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Norris, T. B.

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Oh, S. S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Ott, A. K.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

Ouyang, C.

Ozaki, T.

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

G. Sharma, I. Al-Naib, H. Hafez, R. Morandotti, D. G. Cooke, and T. Ozaki, “Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs,” Opt. Express 20(16), 18016–18024 (2012).
[Crossref] [PubMed]

Pálfalvi, L.

Park, H. G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Park, H. S.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

Paul, M. J.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Peters, D. W.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Pitchappa, P.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Protasenko, V.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Rafique, S.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Rahm, M.

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Reno, J. L.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Ritchie, D. A.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Saito, R.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Sassi, U.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

Savinov, V.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

Scalari, G.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Schönenberger, C.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Shah, Y. D.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Sharma, G.

Shelton, D. J.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Shen, C.-C.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Shin, H. J.

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Sibik, J.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Sinclair, M. B.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Singh, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
[Crossref]

Siregar, S.

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Son, J. H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Son, J.-H.

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Stickel, A.

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Stickel, A. D.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

Su, X.

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Taylor, A. J.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Thompson, Z. J.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Tian, Z.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Tulloss, C.

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Valmorra, F.

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

Wallis, R.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Wang, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, X. R.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wardini, J.

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Wardini, J. L.

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

Wei, B.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Weis, P.

Wraback, M.

Xiao, S.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xie, L.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Xu, C.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, N.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Xu, Q.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Xu, S.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Xu, W.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Yan, R.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, J.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Yang, Q.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Ying, Y.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Yoon, D.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Zeitler, J. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Zhang, H.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

Zhang, J.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited],” Photon. Res. 4(3), A16–A21 (2016).
[Crossref]

Zhang, S.

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
[Crossref]

Zhang, X.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited],” Photon. Res. 4(3), A16–A21 (2016).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Zhao, R.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Zhao, X.

Zhao, Y.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Zheludev, N. I.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Zhu, M.

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Zou, C.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. J. Shin, J. Kim, S. Kim, H. Kim, V. L. Nguyen, Y. H. Lee, S. C. Lim, and J.-H. Son, “Transient carrier cooling enhanced by grain boundaries in graphene monolayer,” ACS Appl. Mater. Interfaces 9(46), 41026–41033 (2017).
[Crossref] [PubMed]

ACS Nano (2)

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping dependence of the Raman spectrum of defected graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Adv. Mater. (6)

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A superconducting dual-channel photonic switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30(31), e1802760 (2018).
[Crossref] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Adv. Opt. Mater. (3)

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

T. T. Kim, H. Kim, M. Kenney, H. S. Park, H. D. Kim, B. Min, and S. Zhang, “Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces,” Adv. Opt. Mater. 6(1), 1700507 (2018).
[Crossref]

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

H. A. Hafez, P. L. Levesque, I. Al-Naib, M. M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, “Intense terahertz field effects on photoexcited carrier dynamics in gated graphene,” Appl. Phys. Lett. 107(25), 251903 (2015).
[Crossref]

M. J. Paul, B. Lee, J. L. Wardini, Z. J. Thompson, A. D. Stickel, A. Mousavian, H. Choi, E. D. Minot, and Y.-S. Lee, “Terahertz induced transparency in single-layer graphene,” Appl. Phys. Lett. 105(22), 221107 (2014).
[Crossref]

G. R. Keiser, N. Karl, P. Liu, C. Tulloss, H.-T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009).
[Crossref]

Carbon (2)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

H.-L. Liu, S. Siregar, E. H. Hasdeo, Y. Kumamoto, C.-C. Shen, C.-C. Cheng, L.-J. Li, R. Saito, and S. Kawata, “Deep-ultraviolet Raman scattering studies of monolayer graphene thin films,” Carbon 81, 807–813 (2015).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review,” J. Infrared Millim. Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

J. Phys. Chem. B (1)

H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene,” J. Phys. Chem. B 117(49), 15819–15824 (2013).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (2)

J. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Light Sci. Appl. (1)

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light Sci. Appl. 7(1), 28 (2018).
[Crossref]

Nano Lett. (5)

F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett. 12(9), 4518–4522 (2012).
[Crossref] [PubMed]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Nanoscale (2)

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref] [PubMed]

Nat. Commun. (4)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, “High-field terahertz response of graphene,” New J. Phys. 15(8), 085019 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

M. R. Hashemi, S. Cakmakyapan, and M. Jarrahi, “Reconfigurable metamaterials for terahertz wave manipulation,” Rep. Prog. Phys. 80(9), 094501 (2017).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

RSC Advances (1)

Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, and S. Xu, “Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial,” RSC Advances 8(49), 27746–27753 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the graphene-metal hybrid metamaterial, with geometric parameters P = 100 μm, L = 28 μm, w = 3 μm, and d = 4 μm. (b) Measured Raman spectrum of monolayer graphene around the SRRs on the sapphire substrate. (c) Measured transmission spectra of the sample with and without graphene coating under different THz field strengths.
Fig. 2
Fig. 2 (a) Measured THz transmission of monolayer graphene on the sapphire substrate at different THz field strengths. (b) Real part of the conductivity of graphene, obtained from the transmission measurements in (a).
Fig. 3
Fig. 3 Simulated THz transmission of uncoated metamaterials with single SRR, double SRRs, and three adjoined SRRs in the unit cell, along with current directions and normal magnetic field component distributions at resonances.
Fig. 4
Fig. 4 (a) Simulated THz transmissions of the sample without and with graphene coating. The conductivity of graphene is tuned by varying the scattering time. (b) The real part of conductivity of graphene used in the simulation.
Fig. 5
Fig. 5 (a) Surface currents at the two resonances and in the transmission window (0.6 THz) of the sample without graphene coating. (b) Corresponding distributions of the root-mean-squared electric field amplitudes of the metamaterial without graphene coating and coated with graphene with different conductivity.
Fig. 6
Fig. 6 (a) Calculated THz transmission spectra of the sample without graphene coating and with graphene coating under different THz field strengths. (b) The fitting parameters used in the corresponding calculations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x ¨ 1 + γ 1 x ˙ 1 + ω 1 2 x 1 + κ 12 x 2 =g×E ,
x ¨ 2 + γ 2 x ˙ 2 + ω 2 2 x 2 + κ 12 x 1 =0 .
χ e = g×( ω 2 +i γ 2 ω+ ω 2 2 ) ( ω 2 +i γ 1 ω+ ω 1 2 )×( ω 2 +i γ 2 ω+ ω 2 2 ) κ 12 2 .
T=| c(1+ n sapp ) c(1+ n sapp )i χ e |,

Metrics